Processing math: 2%

CBSE Questions for Class 12 Medical Physics Dual Nature Of Radiation And Matter Quiz 3 - MCQExams.com

A negatively charged electroscope with zinc disc discharges when irradiated by an ultraviolet lamp. What caused this?
  • α particles from the source combine with electrons of the disc
  • electrons escape from the disc when ultraviolet radiation falls on it
  • ultraviolet rays ionize the air surrounding the electroscope
  • the disc becomes hot and thermionic emission takes place
Which of the following particles - neutron, proton,electron and deuteron has the lowest energy if all have the same de Broglie wavelength:
  • neutron
  • proton
  • electron
  • deuteron
The correct curve between the energy of photon (E) and its wavelength ( λ ) is
With the decrease in the wave length of the incident radiation the velocity of the photoelectrons emitted from a given metal
  • Remains same
  • Increases
  • Decreases
  • Increases first and then decreases
The mass of a photon in motion is (given its frequency = x ):
  • hxc2
  • hx3
  • hx3c2
  • Zero
The deBroglie wavelength associated with a particle of mass m, moving with a velocity 'v\ ' and energy E is given by
  • \dfrac{h}{mv^{2}}
  • \dfrac{mv}{h^{2}}
  • \dfrac{h}{\sqrt{2mE}}
  • \sqrt{2mE}/h
An electron of charge 'e' and mass 'm' is accelerated from rest by a potential difference 'V'. The de Broglie wavelength is
  • Directly proportional to the square root of potential difference.
  • Inversely proportional to the square root of potential difference
  • Directly proportional to the square root of electron mass
  • Inversely proportional to the cube root of electron mass
An electron of mass 9.1\times 10^{-31}kg and charge 1.6\times 10^{-19}C is accelerated through a potential difference of 'V' volt. The de Broglie wavelength (\lambda ) associated with the electron is
  • \dfrac{12.27}{\sqrt{V}}A^{0}
  • \dfrac{12.27}{V}A^{0}
  • 12.27\sqrt{V}A^{0}
  • \dfrac{1}{12.27\sqrt{V}}A^{0}
The de Broglie wavelength of a molecule of thermal energy KT (K is Boltzmann constant and T is absolute temperature) is given by :
  • \dfrac{h}{\sqrt{2mKT}}
  • \dfrac{h}{2mKT}
  • h\sqrt{2mKT}
  • \dfrac{1}{h\sqrt{2mKT}}
The graph between the de Broglie wavelength and the momentum of a photon is a 
  • Rectangular hyperbola
  • Circle
  • Parabola
  • Straight line
The wavelength associated with a photon of energy 3.31 eV is nearly
  • 4000 A^{o}
  • 3750 A^{o}
  • 5000 A^{o}
  • 400 A^{o}
Let p and E denote the linear momentum and energy, respectively, of a proton. If the wavelength is decreased
  • Both p and E increase
  • p increases and E decreases
  • p decreases and E increases
  • Both p and E decrease
The ratio of the wavelengths of a photon and that of an electron of same energy E will be [m is mass of electron]:
  • \sqrt{\dfrac{2m}{E}}
  • \sqrt{\dfrac{E}{2m}}
  • c\sqrt{\dfrac{2m}{E}}
  • \sqrt{\dfrac{Ec}{2m}}
The wavelengths of a proton and a photon are same. Then :
  • their velocities are same
  • their momenta are equal
  • their energies are same
  • their speeds are same
An electron and a proton possess the same amount of Kinetic energy. Then the relation between the wavelength of electron(\lambda _{e}) and the wavelength of proton(\lambda _{p}) is
  • \lambda_{e}=\lambda _{p}
  • \lambda_{e}> \lambda _{p}
  • \lambda_{e}< \lambda _{p}
  • \lambda_{e} \leq \lambda _{p}
The energy of emitted photoelectrons from a metal is 0.9 eV. The work function of the metal is 2.2 eV. Then the energy of the incident photon is :
  • 0.9 eV
  • 2. 2 eV
  • 4. 4 eV
  • 3.1 eV
A proton and an electron are accelerated by the same potential difference. Let \lambda_{e} and \lambda_{p} denote the de Broglie wavelength of the electron and the proton respectively, then
  • \lambda_{e} = \lambda _{p}
  • \lambda_{e} < \lambda _{p}
  • \lambda_{e} > \lambda _{p}
  • \lambda_{e} \geq \lambda _{p}
A laser used to weld detached retains emits light with a wavelength 652 nm in pulses that are of 20ms duration. The average power during each pulse is 0.6W. The energy in each pulse and in a single photon are :
  • 7.5\times 10^{15}eV,2.7eV
  • 6.5\times 10^{16}eV,2.9eV
  • 6.5\times 10^{16}eV,2.7eV
  • 7.5\times 10^{16}eV,1.9eV
Two photons have energies of 4.95\times 10^{-19}J and 14.85\times 10^{-19}J. Then the ratio of their wavelengths is
  • 1 : 3
  • 3 : 1
  • 1 : 2
  • 1 : 4
The energy that should be added to an electron to reduce its de-Broglie wavelength from 1nm to 0.5nm is
  • Four times the intial energy
  • Equal to initial energy
  • Twice the initial energy
  • Thrice the intial energy
The magnitude of the De-Broglie wavelength (\lambda) of an electron (e),proton(p),neutron (n) and \alpha - particle (\alpha ) all having the same energy of MeV, in the increasing order will follow the sequence:
  • \lambda_{e},\lambda _{p},\lambda_{n} ,\lambda_{\alpha }
  • \lambda_{\alpha },\lambda _{n},\lambda_{p} ,\lambda_{e}
  • \lambda_{e},\lambda _{n},\lambda_{p} ,\lambda_{\alpha }
  • \lambda_{p},\lambda _{e},\lambda_{\alpha } ,\lambda_{n }
The de Broglie wavelength of an electron having 80 eV of energy is nearly 
(1eV=1.6\times10^{-19}J , Mass of electron =9\times 10^{-31}kg
Planck’s constant =6.6\times 10^{-34}Js) (nearly)
  • 140 A^{0}
  • 0.14 A^{0}
  • 14 A^{0}
  • 1.4A^{0}
A particle of mass 10^{-31} kg is moving with a velocity equal to 10^{5} ms^{-1}. The wavelength of the particle is equal to:
  • 6.6\times 10^{-8}cm
  • 0.66\times 10^{-8}cm
  • 6.6\times 10^{-8}m
  • 10cm
Two particles of masses m and 2m have equal kinetic energies. Their de Broglie wavelengths are in the ratio of 
  • 1 :1
  • 1:2
  • 1:\sqrt{2}
  • \sqrt{2}:1
The de-Broglie wavelength of a particle moving with a velocity 2.25 \times 10^{8}\ m/s is equal to the wavelength of photon. The ratio of kinetic energy of the particle to the energy of the photon is :
  • \dfrac{1}{8}
  • \dfrac{3}{8}
  • \dfrac{5}{8}
  • \dfrac{7}{8}
If electron is having a wavelength of 100 A^{0}, then momentum is (gm \  cm \ s^{-1}) units
  • 6.6\times 10^{-32}
  • 6.6\times 10^{-29}
  • 6.6\times 10^{-35}
  • 6.6\times 10^{-21}
The wavelength corresponding to a beam of electrons whose kinetic energy is 100 eV is 
(h=6.6\times 10^{-34} Js, 1eV=1.6\times10^{-19}J J,m_{e}= 9.1 \times 10^{-31} kg)
  • 4.8 A^{0}
  • 3.6 A^{0}
  • 1.2 A^{0}
  • 2.4 A^{0}
A proton and an alpha particle are accelerated through the same potential difference. The ratio of wavelengths associated with proton and alpha particle respectively is :
  • 1:2\sqrt{2}
  • 2:1
  • 2\sqrt{2}:1
  • 4:1
If an electron and a proton have the same kinetic energy, the ratio of the de Broglie wavelengths of proton and electron would approximately be :
  • 1 : 1837
  • 43 : 1
  • 1837 : 1
  • 1 : 43
A particle having a de Broglie wavelength of 1.0 A^{0} is associated with a momentum of (given h = 6.6 \times 10^{-34} Js)
  • 6.6\times 10^{-26}kg m/s
  • 6.6\times 10^{-25}kg m/s
  • 6.6\times 10^{-24}kg m/s
  • 6.6\times 10^{-22}kg m/s
A charged particle drops through V volts. Match the de Broglie wavelength for given particles 
 Particle                                                                         \lambda\ in\ A^o
a. Electron e. \sqrt{\dfrac{0.0817}{V}}
 b. Deuteron f. \sqrt{\dfrac{0.0102}{V}}
 c. \alpha particle g. \sqrt{\dfrac{150}{V}}
 d. Proton h.\sqrt{\dfrac{0.0409}{V}}
.
  • a-g, b-e, c-h, d-f
  • a-g, b-h, c-f, d-e
  • a-h, d-e, c-f, d-g
  • a-h, h-f, c-e, d-h
If \lambda_{0} is the de Broglie wavelength for a proton accelerated through a potential difference of 100V, the de Broglie wavelength for \alpha -particle accelerated through the same potential difference is
  • 2\sqrt{2}\lambda _{0}
  • \dfrac{\lambda _{0}}{2}
  • \dfrac{\lambda _{0}}{2\sqrt{2}}
  • \dfrac{\lambda _{0}}{\sqrt{2}}
If the energy of a particle is reduced to one fourth, then the percentage increase in its de Broglie wavelength will be :
  • 41%
  • 141%
  • 100%
  • 71%
In a Compton effect experiment, X-ray photons of wavelength 0.22A^{0} suffer a Compton shift of 0.02A^{0}. The fractional change in the energy of the incident photons is_________
  • 1/12
  • 6/7
  • 5/12
  • 5/7
If the velocity of a particle is increased three times, then the percentage decrease in its de Broglie wavelength will be :
  • 33.3%
  • 66.6%
  • 99.9%
  • 22.2%
A monochromatic source of light operating at 200 W emits 4 \times 10^{20} photons/second. Then the wavelength of light used is
  • 3000 A^{0}
  • 5000 A^{0}
  • 4000 A^{0}
  • 6000A^{0}
The de-Broglie wavelength of a bus moving with speed 'v' is '\lambda' .Some passengers left the bus at a stoppage . Now when the bus moves with twice its initial speed, its kinetic energy is found to be twice its initial value. The de-Broglie wavelength now is
  • \lambda
  • 2\lambda
  • \lambda/2
  • \lambda/4
If the momentum of an electron is changed by p_{m}, then the de Broglie wavelength associated with it increased by 0.5\%. The initial momentum of electron will be
  • p_{m}/200
  • p_{m}/100
  • 201p_{m}
  • 100p_{m}
Light of wavelength 5000 A^o falls on a sensitive surface. If the surface has received 10^{-7}J of energy, then the number of photons incident on the surface is nearly (given h= 6.6 \times 10^{-34} Js c = 3 \times 10^{8} m/s)
  • 2.5\times 10^{11}
  • 5.0\times 10^{11}
  • 3.5\times 10^{11}
  • 5.0\times 10^{10}
Work function of a metal is 2.1 eV. The pair of wavelengths which is able to emit photo-electrons is
  • 4000 A^{0}, 7500 A^{0}
  • 5500 A^{0}, 6000 A^{0}
  • 4000 A^{0}, 5000 A^{0}
  • None of these
A positron and a proton are accelerated by the same accelerating potential. Then the ratio of the associated wavelengths of the positron and the proton will be :
[ M = Mass of proton, m = Mass of positron]
  • \dfrac{M}{m}
  • \sqrt{\dfrac{M}{m}}
  • \dfrac{m}{M}
  • \sqrt{\dfrac{m}{M}}
Electrons are accelerated through a p.d. of 150V. Given m=9.1\times{10}^{-31} Js, the de Broglie wavelength associated with it is 
  • 1.5A^{0}
  • 1.0A^{0}
  • 3.0 A^{0}
  • 0.5 A^{0}
The de Broglie wavelength associated with an electron of energy 500 eV is given by
(take h=6.63\times 10^{-34}Js,m=9.11\times 10^{-31}kg )
  • 0.28A^{0}
  • 1.410 A^{0}
  • 0.66 A^{0}
  • 0.55 A^{0}
The momentum of a photon of a electromagnetic radiation is 3.3\times 10^{-29}kg \ m \ s^{-1} .The frequency of the associated waves is (h = 6.6 \times 10^{-34} Js, c = 3 \times 10^{8} m/s) 
  • 3.0\times 10^{3}Hz
  • 6.0\times 10^{3}Hz
  • 7.5\times 10^{12}Hz
  • 1.5\times 10^{13}Hz
The wavelength of de broglie waves associated with a beam of protons of kinetic energy 5 \times 10^{2}eV.
(Mass of each photon= 1.67 \times 10^{-27}Kg, h=6.62 \times 10^{-34}Js.)
  • 2.42 \times10^{-12}m
  • 4.24 \times10^{-12}m
  • 1.82 \times10^{-12}m
  • 1.28 \times10^{-12}m
The momentum ( in Kg-m/s) of an electron having wavelength 2A^{0}  (h=6.62 \times10^{-34}Js.)
  • 3.3125\times 10^{-24}
  • 4.24 \times 10^{-23}
  • 1.82 \times 10^{-29}
  • 1.28 \times 10^{-12}
The momentum of a photon having energy equal to the rest energy of an electron is
  • Zero
  • 2.7\times 10^{-22}kgms^{-1}
  • 1.99\times 10^{-24}kgms^{-1}
  • \infty
An electron and a proton are accelerated through the same potential difference. The ratio of their de Broglie wavelengths (\dfrac{\lambda_{e}}{\lambda_{p}} ) is
  • 1
  • \dfrac{m_{e}}{m_{p}}
  • \dfrac{m_{p}}{m_{e}}
  • \sqrt{\dfrac{m_{p}}{m_{e}}}
The de-Broglie wavelength associated with an electron accelearated to potential difference of V volt is:
  • V\times 10^{-10}m
  • \sqrt{\dfrac{150}{V}}A^{0}
  • \dfrac{150}{V}A^{0}
  • 150V\times 10^{-8}m
A proton when accelerated through a potential difference of V volt has wavelength \lambda  associated with it .An electron to have the same \lambda  must be accelerated through a p.d of
  • \dfrac{V}{8} volt
  • 4V volt
  • 2V volt
  • 1838V volt
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Medical Physics Quiz Questions and Answers