Explanation
Let initial momentum is piand final reflected momentum is pfsuch that
Energy, E=hcλ.....(1)
pi=hλ=Ec(from1)
pf=−hλ=−Ec
So, net change in momentum is
Δp=pf−pi
Δp=−Ec−Ec
Δp=−2Ec
The momentum transferred to the surface is2Ec
The ratio of the de-Broglie wavelength of an electron to a photon is 32. The speed of the electron is equal to 23rd of a speed of light. Then the ratio of the energy of the electron to a photon is
We Know,According to De-Broglie equation:
p=hλ p=momentum.
p=h×cλ×c=energyc
p=9×1.6×10−193×108
p=14.4×10−273
p=4.8×10−27
Hence option B is correct.
Given that,
The maximum wave length \lambda_{0} =200\,nm
Radiation of wave length \lambda =100\,nm
We know that, the maximum K.E is
K.E=12400\left[ \dfrac{1}{\lambda }-\dfrac{1}{{{\lambda }_{0}}} \right]
K.E=12400\left[ \dfrac{1}{1000}-\dfrac{1}{2000} \right]
K.E=12400\times \dfrac{1}{2000}
K.E=6.2\,eV
Hence, the kinetic energy is 6.2\ eV
T=20+273=293\,K
Molecular mass of {{H}_{2}}=2\times 1.00794=2.01588\times 1.66\times {{10}^{-27}}\,kg
We know that,
\dfrac{1}{2}mv_{rms}^{2}=\dfrac{3}{2}kT
{{v}_{rms}}=\sqrt{\dfrac{3kt}{m}}
Now, the de Broglie wave length
\lambda =\dfrac{h}{m{{v}_{rms}}}
\lambda =\dfrac{h}{\sqrt{3mkT}}
\lambda =\dfrac{6.63\times {{10}^{-34}}}{\sqrt{3\times 2.01588\times 1.66\times {{10}^{-27}}\times 1.38\times {{10}^{-23}}\times 293}}
\lambda =\dfrac{6.63\times {{10}^{-34}}}{\sqrt{4059.20\times {{10}^{-50}}}}
\lambda =\dfrac{6.63\times {{10}^{-34}}}{63.712\times {{10}^{-25}}}
\lambda =0.104\times {{10}^{-9}}
\lambda =1.04\overset{\circ }{\mathop{A}}\,
Hence, the de Broglie wave length is 1.04\overset{\circ }{\mathop{A}}\,
Kinetic energy of photoelectron is {{E}_{1}} and {{E}_{2}} for incident light of frequency \upsilon and 2\upsilon respectively
Now, h\upsilon ={{E}_{1}}+{{\phi }_{0}}.....(I)
2h\upsilon ={{E}_{2}}+{{\phi }_{0}}.....(II)
Now, put the value of h\upsilon in equation (II)
2\left( {{E}_{1}}+{{\phi }_{o}} \right)={{E}_{2}}+{{\phi }_{0}}
{{E}_{2}}=2{{E}_{1}}+{{\phi }_{0}}
So, the kinetic energy of the emitted photoelectrons becomes more then two times its initial value
K = \displaystyle {{hc} \over \alpha } - \phi
= \displaystyle {{6.63 \times {{10}^{ - 34}} \times 3 \times {{10}^8}} \over {200 \times {{10}^{ - 9}} \times 1.6 \times {{10}^{ - 19}}}} - 4.5
= 1.7eV
Min. energy with which electrons emitted=1.7eV
Max. K\varepsilon \Rightarrow {K_{\min }} + e{V_0}
= 1.7 + 2
= 3.7eV
De Broglie wavelength in terms of accelerated potential difference is
\lambda =\dfrac{12.27}{\sqrt{V}}
Initial and final wavelength are {{\lambda }_{1}}and {{\lambda }_{2}}having potential as {{V}_{1}}and {{V}_{2}}
\dfrac{{{\lambda }_{1}}}{{{\lambda }_{2}}}=\sqrt{\dfrac{{{V}_{2}}}{{{V}_{1}}}}
\dfrac{{{\lambda }_{1}}}{{{\lambda }_{2}}}=\sqrt{\dfrac{100}{25}}
\dfrac{{{\lambda }_{1}}}{{{\lambda }_{2}}}=\sqrt{2}
\dfrac{{{\lambda }_{1}}}{{{\lambda }_{2}}}=2
{{\lambda }_{2}}=\dfrac{{{\lambda }_{1}}}{2}
So, new wavelength is decrease by 2.
Please disable the adBlock and continue. Thank you.