Explanation
Let initial momentum is $${{p}_{i}}$$and final reflected momentum is $${{p}_{f}}$$such that
Energy, $$E=\dfrac{hc}{\lambda }.....(1)$$
$$ {{p}_{i}}=\dfrac{h}{\lambda }=\dfrac{E}{c}\,\,(from\,\,1) $$
$$ {{p}_{f}}=\dfrac{-h}{\lambda }=\dfrac{-E}{c} $$
So, net change in momentum is
$$ \Delta p={{p}_{f}}-{{p}_{i}} $$
$$ \Delta p=\dfrac{-E}{c}-\dfrac{E}{c} $$
$$ \Delta p=-\dfrac{2E}{c} $$
The momentum transferred to the surface is$$\dfrac{2E}{c}$$
The ratio of the de-Broglie wavelength of an electron to a photon is $$\frac{3}{2}$$. The speed of the electron is equal to $$\frac{2}{3}rd$$ of a speed of light. Then the ratio of the energy of the electron to a photon is
We Know,According to De-Broglie equation:
$$p=\dfrac{h}{\lambda}$$ p=momentum.
$$p= \dfrac{h\times c}{\lambda \times c}= \dfrac{\textrm{energy}}{c}$$
$$p= \dfrac{9\times 1.6\times 10^{-19}}{3\times 10^8}$$
$$p=\dfrac{14.4 \times 10^{-27}}{3}$$
$$p=4.8\times 10^{-27}$$
Hence option $$\textbf B$$ is correct.
Given that,
The maximum wave length $$\lambda_{0} =200\,nm$$
Radiation of wave length $$\lambda =100\,nm$$
We know that, the maximum K.E is
$$ K.E=12400\left[ \dfrac{1}{\lambda }-\dfrac{1}{{{\lambda }_{0}}} \right] $$
$$ K.E=12400\left[ \dfrac{1}{1000}-\dfrac{1}{2000} \right] $$
$$ K.E=12400\times \dfrac{1}{2000} $$
$$ K.E=6.2\,eV $$
Hence, the kinetic energy is $$6.2\ eV$$
$$T=20+273=293\,K$$
Molecular mass of $${{H}_{2}}=2\times 1.00794=2.01588\times 1.66\times {{10}^{-27}}\,kg$$
We know that,
$$ \dfrac{1}{2}mv_{rms}^{2}=\dfrac{3}{2}kT $$
$$ {{v}_{rms}}=\sqrt{\dfrac{3kt}{m}} $$
Now, the de Broglie wave length
$$ \lambda =\dfrac{h}{m{{v}_{rms}}} $$
$$ \lambda =\dfrac{h}{\sqrt{3mkT}} $$
$$ \lambda =\dfrac{6.63\times {{10}^{-34}}}{\sqrt{3\times 2.01588\times 1.66\times {{10}^{-27}}\times 1.38\times {{10}^{-23}}\times 293}} $$
$$ \lambda =\dfrac{6.63\times {{10}^{-34}}}{\sqrt{4059.20\times {{10}^{-50}}}} $$
$$ \lambda =\dfrac{6.63\times {{10}^{-34}}}{63.712\times {{10}^{-25}}} $$
$$ \lambda =0.104\times {{10}^{-9}} $$
$$ \lambda =1.04\overset{\circ }{\mathop{A}}\, $$
Hence, the de Broglie wave length is $$1.04\overset{\circ }{\mathop{A}}\,$$
Kinetic energy of photoelectron is $${{E}_{1}}$$ and $${{E}_{2}}$$ for incident light of frequency $$\upsilon $$ and $$2\upsilon $$ respectively
Now, $$h\upsilon ={{E}_{1}}+{{\phi }_{0}}.....(I)$$
$$2h\upsilon ={{E}_{2}}+{{\phi }_{0}}.....(II)$$
Now, put the value of $$h\upsilon $$ in equation (II)
$$ 2\left( {{E}_{1}}+{{\phi }_{o}} \right)={{E}_{2}}+{{\phi }_{0}} $$
$$ {{E}_{2}}=2{{E}_{1}}+{{\phi }_{0}} $$
So, the kinetic energy of the emitted photoelectrons becomes more then two times its initial value
$$K = \displaystyle {{hc} \over \alpha } - \phi $$
$$ = \displaystyle {{6.63 \times {{10}^{ - 34}} \times 3 \times {{10}^8}} \over {200 \times {{10}^{ - 9}} \times 1.6 \times {{10}^{ - 19}}}} - 4.5$$
$$ = 1.7eV$$
Min. energy with which electrons emitted=1.7eV
Max. $$K\varepsilon \Rightarrow {K_{\min }} + e{V_0}$$
$$ = 1.7 + 2$$
$$ = 3.7eV$$
De Broglie wavelength in terms of accelerated potential difference is
$$\lambda =\dfrac{12.27}{\sqrt{V}}$$
Initial and final wavelength are $${{\lambda }_{1}}$$and $${{\lambda }_{2}}$$having potential as $${{V}_{1}}$$and $${{V}_{2}}$$
$$ \dfrac{{{\lambda }_{1}}}{{{\lambda }_{2}}}=\sqrt{\dfrac{{{V}_{2}}}{{{V}_{1}}}} $$
$$ \dfrac{{{\lambda }_{1}}}{{{\lambda }_{2}}}=\sqrt{\dfrac{100}{25}} $$
$$ \dfrac{{{\lambda }_{1}}}{{{\lambda }_{2}}}=\sqrt{2} $$
$$ \dfrac{{{\lambda }_{1}}}{{{\lambda }_{2}}}=2 $$
$$ {{\lambda }_{2}}=\dfrac{{{\lambda }_{1}}}{2} $$
So, new wavelength is decrease by 2.
Please disable the adBlock and continue. Thank you.