CBSE Questions for Class 12 Medical Physics Nuclei Quiz 13 - MCQExams.com

Binding energy of deuterium is 2.23 MeV, then its mass defect in a.m.u. is:
 The value of energy for $$_1H^2, _2He^4, _{26}Fe^{56}, _{92}U^{235}$$. 
  • -0.0024
  • -0.0012
  • 0.0012
  • 0.0024
The binding energy of $$\alpha$$-particle $$\begin{array} { l } { 4 } \\ { 2 } \end{array}He$$ is $$7.047$$ $$MeV$$ per nucleon and the binding energy of deutron $$\begin{array} { l } { 2} \\ { 1 } \end{array}H$$ is $$1.112$$ $$MeV$$ per nucleon. Then in the fusion reaction $$_ { 1 } ^ { 2 } H + _ { 1 } ^ { 2 } H \rightarrow _ { 2 } ^ { 4 } H e + Q$$, the energy $$Q$$ released is 
  • $$23.74 \mathrm { MeV }$$
  • $$32.82 \mathrm { MeV }$$
  • $$11.9 MeV$$
  • $$4.94 \mathrm { MeV }$$
Two radioactive nuclei P and Q in a given sample decay into a stable nucleus R. At time t = 0, number of P species are $$4 N_o$$ and that of Q are $$N_o$$. Half-life of P (for conversion to R) is 1 minute where as that of Q is 2 minutes. Initially there are no nuclei of R present in the sample. When number of nuclei of P and Q are equal, the number of nuclei of
R present in the sample would be :-

  • $$\dfrac{9 N_o}{2}$$
  • $$\dfrac{ 7N_o}{2}$$
  • $$\dfrac{N_o}{4}$$
  • $$\dfrac{9 N_o}{4}$$
A nucleus of atomic mass M emits a gamma ray photon of frequency v. then 
  • Kinetic energy acquired by nucleus $$= \frac { h ^ { 2 } v ^ { 2 } } { 2 M c ^ { 2 } }$$
  • Loss in the internal energy of the nucleus $$h v \left( 1 + \frac { h v } { 2 M c ^ { 2 } } \right)$$
  • Momentum of nucleus is equal and opposite to $$\gamma$$ ray photon
  • Loss in internal energy of nucleus is hv
The above is a plot of binding energy per nucleon $$E _ { b }$$ , against the nuclear mass $$\mathrm { M } ; \mathrm { A } , \mathrm { B } , \mathrm { C } , \mathrm { D } , \mathrm { E } , \mathrm { F }$$ correspond to different nuclei. Consider four reactions:
where $$\varepsilon$$ is the energy released? In which reactions is $$\varepsilon$$ positive?

1374725_24e709c2d8ed455389532de3c6fe38a5.jpg
  • $$A + B \rightarrow C + \varepsilon$$
  • $$\mathrm { C } \rightarrow \mathrm { A } + \mathrm { B } + \varepsilon$$
  • $$D + E \rightarrow F + \varepsilon$$
  • $$\mathrm { F } \rightarrow \mathrm { D } + \mathrm { E } + \varepsilon$$
In a hydrogen atom, the binding energy of the electron in the nth state is $$E _ { n }$$ ,  then the frequency of revoulation the electron in the nth orbit is
  • $$2 \mathrm { E } _ { \mathrm { n } } / \mathrm { nh }$$
  • $$2 \mathrm { E } _ { \mathrm { n } } \mathrm { n }$$
  • $$\mathrm { E } _ { \mathrm { n } } / \mathrm { nh }$$
  • $$\mathrm { E } _ { \mathrm { n } } \mathrm { n } / \mathrm { h }$$
The binding energy per nucleon for $$O^{16}$$ and $$O^{17}$$ are respectively 7.99 MeV and 7.95 MeV. The energy required to remove one neutron from the nucleus of $$O^{17}$$ expressed in MeV is
  • 7.31
  • 4.23
  • 7.13
  • 15.94
If radius of the $$_{ 13 }^{ 27 }{ Al }$$ nucleus is estimated to be $$3.6$$ fermi, then the radius of $$^{ 125 }{ Te }$$ nucleus be nearly
  • $$6$$ fermi
  • $$8$$ fermi
  • $$4$$ fermi
  • $$5$$ fermi
If the nucleus is seen as a cubical box of length $$10^{-14}\ m$$, then compute the minimum energy of a nucleon confined to the nucleus. Mass of nucleon=$$1.6\times 10^{-27}\ Kg$$
  • $$10\ MeV$$
  • $$10\ KeV$$
  • $$6\ MeV$$
  • $$6\ KeV$$
Ratio of binding energy of a satellite revolving few metre above the earth's surface and same satellite rest on earth is 
  • 1 : 2
  • 2 : 1
  • 1 : 4
  • 1 : 1
Calculate the binding energy per nucleon of $$_ { 17 } ^ { 35 } \mathrm { C } \ell$$ nucleus. Given that mass of $$_ { 17 } ^ { 35 } \mathrm { C } \ell$$ nucleus $$= 34.98000 \mathrm { u } ,$$ mass of proton $$= 1.007825 \mathrm { u } ,$$ mass of neutron $$= 1.008665 \mathrm { u }$$ and 1$$\mathrm { u }$$ is equivalent to 931$$\mathrm { Mev. }$$
  • 6.2$$\mathrm { Mev }$$
  • 7.2$$\mathrm { Mev }$$
  • 4.2$$\mathrm { Mev }$$
  • 8.2$$\mathrm { Mev }$$
Which of the following elements is non- radioactive?
  • plutonium
  • Zirconium
  • Thorium
  • Uranium
An X-ray pulse of wavelength $$4.9 A^{o}$$ is sent through a section of Wilson cloud chamber containing a supersaturated gas, and tracks of photoelectron ejected from the gaseous atoms are observed. Two groups of tracks of lengths $$1.40 cm$$ and $$2.02 cm$$ are noted. If the range energy relation for cloud chamber is given by $$R = aE$$ with $$ \alpha = \frac { 1 \mathrm { cm } } { k e V }$$. Obtain the binding energies of the two levels from which electrons are emitted. Given $$ h = 6.63 \times 10 ^ { - 34 } \mathrm { J } - \mathrm { s } , \mathrm { e } = 1.6 \times 10 ^ { - 19 } \mathrm { J } $$
  • $$\phi_{1} = 1.14 KeV$$     $$\phi_{2}=0.52 KeV$$
  • $$\phi_{1} = 1.14 KeV$$     $$\phi_{2}=0.75 KeV$$
  • $$\phi_{1} = 0.52 KeV$$     $$\phi_{2}=0.75 KeV$$
  • $$\phi_{1} = 1.14 KeV$$     $$\phi_{2}=0.52 KeV$$
The binding energy of deutron is $$2.23MeV$$. What should be its mass defect in the units of $$amu$$ or $$u$$ ?
  • $$0.0012$$
  • $$0.0024$$
  • $$0.0242$$
  • $$0.2422$$
A radioactive element $$X$$ converts into another stable element $$Y .$$ Half-life of $$X$$ is 2$$h$$ . Initially,only $$X$$ is present. After time $$t$$ , the ratio of atoms of $$X$$ and $$Y$$ is found to be $$1 : 4 .$$ Then $$t$$ inhours is 
  • $$2$$
  • $$4$$
  • between $$4$$ and $$6$$
  • $$6$$
In an $$\alpha$$-decay the Kinetic energy of $$\alpha$$ particle is 48 MeV and Q-value of the reaction is 50 MeV. The mass number of the mother nucleus is : (Assume that daughter nucleus is in ground state)
  • 96
  • 100
  • 104
  • none of these
From the following equations pick out the possible nuclear fusion reactions 
  • $$_{ 6 }{ C }^{ 13 }+_{ 1 }{ H }^{ 1 }\rightarrow _{ 6 }{ C }^{ 14 }+1.3\quad MeV$$
  • $$_{ 6 }{ C }^{ 12 }+_{ 1 }{ H }^{ 1 }\rightarrow _{ 7 }{ C }^{ 14 }+2\quad MeV$$
  • $$_{ 7}{ C }^{ 14 }+_{ 1 }{ H }^{ 1 }\rightarrow _{ 8 }{ C }^{ 15 }+7.3\quad MeV$$
  • $$_{ 92 }{ U }^{ 235 }+_{ 0 }{ n }^{ 1 }\rightarrow _{ 54 }{ X }^{ 140 }+36{ Sr }^{ 94 }+_{ 0 }{ n }^{ 1 }+_{ 0 }{ n }^{ 1 }+y+200\quad MeV$$
$${{\text{Bi}}^{{\text{210}}}}$$ has half life of 5 days. The time taken for $$\dfrac{7}{8}$$th of a sample to decay is___ days
  • 15
  • 3.4
  • 10
  • 20
The binding energy per nucleon for a deuterium is 1.115 MeV. Mass deflect for this nucleus is about -
  • 2.23 u
  • 0.0024
  • 0.027 u
  • 0.0012 u
Atomic weight of boron is 10.81 and it has two isotopses $$ _5B^{10} and _5B^{11} $$ . then the ratio of $$ _5B^{10} : _5B^{11} $$ in nature would be
  • 15 : 16
  • 10: 11
  • 19 : 81
  • 81 ; 19

The binding energy per nucleon for a $$_6{C^{12}}$$ the nucleus is  

( nuclear mass of $$_6{C^{12}}$$                    =12.00000 a.m.u.

Mass of hydrogen nucleus               = 1.007825 a.m.u.

Mass of neutron                               =1.00 8665 a.m.u)

  • 2.675 MeV
  • 7.675 MeV
  • 0 MeV
  • 3.675 MeV
Let $${ m }_{ p }$$ be the mass of a proton, $${ m }_{ n }$$ the mas of a neutron, $${ M }_{ 1 }$$ the mass of a $$^{20}_{10}Ne$$ nucleus and $${ M }_{ 2 }$$ the mass of a $$^{ 40 }_{ 20 }Ca$$ nucleus. Then 
  • $${ M }_{ 2 }>2{ M_1 }$$
  • $${ M }_{ 2 }<2{ M_{ 1 } }$$
  • $${ M }_{ 2 }=2{ M }_{ 1 }$$
  • $${ M }_{ 1 }>10\left( { m }_{ n }+{ m }_{ p } \right) $$
For $${\text{N = }}{{\text{N}}_0}{e^{ - kt}}and\,{t_2} > {t_1},$$ the  number of nuclei disintegrating  between $${t_1}\,and\,{t_2}$$ is..............
  • $${{\text{N}}_0}[{e^{ - \lambda t_1}} - {e^{ - \lambda t_2}}]$$
  • $${{\text{N}}_0}[{e^{ - \lambda t_2}} - {e^{ - \lambda t_1}}]$$
  • $${{\text{N}}_0}[{e^{\lambda t_2}} - {e^{\lambda t_1}}]$$
  • none of the above.
How much energy is released when $$1$$ amu of mass is annihilated? 
  • $$931.5\,MeV$$
  • $$1.49 \times {10^{ - 3}}J$$
  • $$4.138 \times {10^{ - 17}}\,kWh$$
  • All of these
If $$M(A,Z)$$, $$ M_p$$ and $$M_n $$ denote the masses of the nucleus $$^A_ZX , $$ proton and neutron respectively in units of $$u$$ $$( 1u = 931.5 MeV /C^2 )$$ and BE represents its bonding energy in $$MeV$$, then 
  • $$ M(A, Z) = ZM_p + (A-Z)M_n + BE/C^2 $$
  • $$ M(A, Z) = ZM_p + (A-Z)M_n - BE/C^2 $$
  • $$ M(A, Z) = ZM_p + (A-Z)M_n + BE $$
  • $$ M(A, Z) = ZM_p + (A-Z)M_n - BE $$
If the mass of proton = $$1.008 amu$$ and mass of neutron = $$1.009 a.m.u.$$, then binding energy per nucleon for $$_{4}Be^{9}$$ (mass = $$9.012amu$$) would be:-
  • $$0.065 MeV$$
  • $$60.44MeV$$
  • $$67.2MeV$$
  • $$6.72MeV$$
The mass of proton is  $$1.0073 u$$  and that of neutron is  $$1.0087 u$$   ($${ u } =$$  atomic mass unit). The binding energy of  $$_ { 2 } H e ^ { 4 }$$  is (Given, mass of helium nucleus  $$= 4.0015{ u }$$ )
  • $$28.4{ MeV }$$
  • $$62.4{ MeV }$$
  • $$42.4{ MeV }$$
  • $$10.2{ MeV }$$
The decay constant of the end product if a radioactive series is 
  • zero
  • infinite
  • finite ( non zero)
  • depends on the end product
Free $$ ^{238}U $$ nuclei kept in a train emit alpha particles. When the train is stationary and a uranium nucleus decays, a passenger measures that the separation between the alpha particle and the recoiling nucleus becomes x in time t after the decay. If a decay takes place when the train is moving at a uniform speed v, the distance between the alpha particle and the recoiling nucleus at a time t after the decay, as measured by the passenger will be
  • x + vt
  • x- vt
  • x
  • depends on the direction of the train.
If ionization potential of Hydrogen atom is 13.6 V then what is ionization potential of He atom ?
  • 27.6 V
  • 13.6 V
  • 54.2 V
  • None of these
Using the following data mass of hydrogen atom$$=1.00783u$$ mass of neutron $$1.00867u$$ mass of nitrogen atom $$(_{ 7 }N^{14})$$=$$14.00307u$$. The calculated value of the binding energy of the nucleus of the nitrogen atom $$(_{ 7 }N^{ \ 14\ })$$ is close 
  • $$56MeV$$
  • $$98MeV$$
  • $$104MeV$$
  • $$112MeV$$
Which element is the end product of each natural radioactive series?
  • Sn
  • Bi
  • Pb
  • C
Choose the element which is not radioactive.
  • Cm
  • No
  • Mo
  • Md
Nd (Z  = 60) is a member of group -3 in the periodic table. An isotope of it is $$\beta$$ -active. The daughter nuclei will be a member of:
  • Group - 3
  • Group - 4
  • Group - 1
  • Group - 2
Radioactivity was discovered by
  • Henry Becquerel
  • Rutherford
  • J. J. Thomson
  • Madam Curie
Tritium undergoes radioactive decay giving:
  • $$\alpha$$ - particles
  • $$\beta$$ - particles
  • Neutrons
  • None of these
The phenomenon of radioactivity arises from the
  • Binary fission
  • Nuclear fusion
  • Stable nuclei
  • Decay of unstable nuclei
If radium and chlorine combine to from radium chloride the compound is:
  • No longer radioactive
  • Twice as radioactive as radium
  • Half as radioactive as radium
  • As radioactive as radium
Which of the following statements about the radioactivity of an element is incorrect?
  • It is a nuclear property
  • It does not involve any rearrangement of electrons
  • Its rate is affected by change in temperature and/or pressure
  • It remains unaffected by the presence of other element or elements chemically combined with it
When a sample of solid lithium is placed in a flask of hydrogen gas then following reaction happened
$$_1^1H+_3Li^7 \rightarrow He^4+_2He^4$$
This statement is
1819225_e476ea70970e46258b7ea3f25749d9d9.png
  • True
  • False
  • May be true at a particular presure
  • None of these
Radioactivity is affected by:
  • temperature
  • pressure
  • electric and magnetic field
  • none of these
One or more answers is/are correct.
In electron capture (radioactive process)
  • a neutron is formed
  • a proton is consumed
  • $$\gamma$$-ray emission takes place
  • X-ray emission takes place
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Medical Physics Quiz Questions and Answers