Explanation
It is given that,
$${{R}_{1}}=-3\,cm$$
Focal length of concave lens $${{f}_{1}}=\dfrac{-3}{2}$$
$${{R}_{2}}=2\,cm$$
Focal length of convex lens $${{f}_{2}}=1\,cm$$
Combined focal length is
$$ \dfrac{1}{f}=\dfrac{1}{{{f}_{1}}}+\dfrac{1}{{{f}_{2}}} $$
$$ \dfrac{1}{f}=\dfrac{-2}{3}+1 $$
$$ \dfrac{1}{f}=\dfrac{1}{3}........(1) $$
The relation between redfractive index and focal length is
$$ \dfrac{1}{f}=\left( \mu -1 \right)\left[ \dfrac{1}{{{R}_{1}}}-\dfrac{1}{{{R}_{2}}} \right] $$
$$ \dfrac{1}{3}=\left( \mu -1 \right)\left[ \dfrac{1}{-3}-\dfrac{1}{2} \right] $$
$$ \dfrac{1}{3}=\left( \mu -1 \right)\left[ \dfrac{-5}{6} \right] $$
$$ \mu =\dfrac{3}{5} $$
Total deviation for yellow ray produced
$$\delta y=\delta_{cy}-\delta_{fy}+\delta _{cy}$$
$$=2\delta_{cy}-\delta_{fy}$$
$$=2(\mu_{cy-1})A-(\mu_{-cy}-1)A^1$$
Angular dispersion,
$$\delta_v-\delta_r=[(\mu_{vc}-1)A-(\mu_{vf}-1)A^1+(\mu_{vc}-1)A]$$
$$-[(\mu_{rc}-1)A-(\mu_{rf}-1)A^1+(\mu_{r}-1)A]$$
$$2(\mu_{vc}-1)A-(\mu_{vf}-1)A^1$$
For net angular dispersion to be zero,
$$\delta_r-\delta_r=0$$
$$2(\mu_{vc}-1)A=(\mu_{vf}-1)A^1$$
If $$\mu ,$$ represents the refractive index when a light ray goes from medium i to j, then $$_2{\mu _1}{\text{ x}}{{\text{ }}_3}{\mu _2}{\text{ x}}{{\text{ }}_4}{\mu _3}$$ is equal to
A light ray is incident normally on the surface $$AB$$ of a prism of refracting angle $$60^\circ$$. If the light ray does not emerge from $$AC$$, then find the refractive index of the prism.
Given that,
Diameter $$d=2\,m$$
Wave length $$\lambda =5000\,\overset{\circ }{\mathop{A}}\,$$
Now, minimum angular separation is
$$ \Delta \theta =\dfrac{1.22\lambda }{d} $$
$$ \Delta \theta =\dfrac{1.22\times 5000\times {{10}^{-10}}}{2} $$
$$ \Delta \theta =0.3\times {{10}^{-6}}\,rad $$
Hence, the resolving power is $$0.3\times {{10}^{-6}}\,rad$$
Given,
Radius of curvature, $$R$$
Refractive index = $$ 1.5 $$
Focal length of lens, $$f=\dfrac{R}{(\mu-1)}=\dfrac{R}{(1.5-1)}=2R$$
Magnification from mirror
$$m = \dfrac { h _ { i } } { h _ { o } } = \dfrac { - v } { u }$$
Whereas
$$h _ { i } =$$ Height of image from principal axis
$$h _ { o } =$$ Height of object from principal axis
$$u =$$ Object distance
$$v =$$ Image distance
Angular magnification $$m = \dfrac { f _ { o } } { f _ { e } } = \dfrac { 150 } { 5 } = 30$$
$$\therefore \quad \dfrac { \tan \beta } { \tan \alpha } = 30 \Rightarrow \tan \beta = \tan \alpha \times 30$$
$$\tan \beta = \left( \dfrac { 50 } { 1000 } \times 30 \right) = \dfrac { 15 } { 10 } = \dfrac { 3 } { 2 }$$
$$\tan \beta = \dfrac { 3 } { 2 } \Rightarrow \tan \beta = \tan ^ { - 1 } \left( \dfrac { 3 } { 2 } \right)$$
$$\theta = \beta \simeq 60 ^ { \circ }$$
At what angle will a ray of light be inclined on one face of an equilateral prism, so that the emergen ray may graze the second surface of the prism $$\left( {\mu = 2} \right)$$
Refractive indexes for, glass $${{\mu }_{g}}=1.5$$, water $${{\mu }_{w}}=\dfrac{4}{3}$$ and $${{\mu }_{a}}=1$$ .
If f is the focal length of the lens in air then
$$\dfrac{1}{{{f}_{a}}}=\left( \dfrac{{{\mu }_{g}}}{{{\mu }_{a}}}-1 \right)\times \left( \dfrac{1}{{{R}_{1}}}-\dfrac{1}{{{R}_{2}}} \right)\,\,.........\,\,(1)$$
If f is the focal length of the lens in water then $$\dfrac{1}{{{f}_{w}}}=\left( \dfrac{{{\mu }_{g}}}{{{\mu }_{w}}}-1 \right)\times \left( \dfrac{1}{{{R}_{1}}}-\dfrac{1}{{{R}_{2}}} \right)\,\,.........\,\,(2)$$
Divide equation (1) by (2)
$$\dfrac{\dfrac{1}{{{f}_{a}}}}{\dfrac{1}{{{f}_{w}}}}=\dfrac{\left( \dfrac{{{\mu }_{g}}}{{{\mu }_{a}}}-1 \right)}{\left( \dfrac{{{\mu }_{g}}}{{{\mu }_{w}}}-1 \right)}$$
$$ {{f}_{w}}=\left( \dfrac{{{\mu }_{g}}-{{\mu }_{a}}}{{{\mu }_{a}}}\times \dfrac{{{\mu }_{w}}}{{{\mu }_{g}}-{{\mu }_{w}}} \right){{f}_{a}} $$
$$ {{f}_{w}}=\left( \dfrac{1.5-1}{1}\times \dfrac{4/3}{1.5-4/3} \right)\times 20=80\,cm $$
Hence, focal length in water, $${{f}_{w}}=80\,cm$$
Focal length $$f=10\,cm$$
Refractive index $${{\mu }_{1}}=1.5$$
Refractive index $${{\mu }_{2}}=1.25$$
We know that,
$$ \dfrac{1}{f}=\left( n-1 \right)\left( \dfrac{1}{{{R}_{1}}}-\dfrac{1}{{{R}_{2}}} \right) $$
$$ \dfrac{1}{10}=\left( 1.5-1 \right)\left( \dfrac{1}{{{R}_{1}}}-\dfrac{1}{{{R}_{2}}} \right)....(I) $$
$$ \dfrac{1}{f}=\left( 1.25-1 \right)\left( \dfrac{1}{{{R}_{1}}}-\dfrac{1}{{{R}_{2}}} \right)....(II) $$
Now, divided equation (I) by equation (II)
$$ \dfrac{f}{10}=\dfrac{0.5}{0.25} $$
$$ f=20\,cm $$
Hence, the focal length is $$20\ cm$$
A convex lens produces an image of an object on a screen with a magnification of $$\frac{1}{2}$$ .When the lens is moved 30 cm away from the object, the magnification of the image is 2.The focal length of the lens is
Please disable the adBlock and continue. Thank you.