Explanation
It is given that,
d=0.25\,cm
D=100\,cm
\lambda =6000\,\dot{A}=6\times {{10}^{-7}}\,m
For central maximum
x=\dfrac{Dn\lambda }{d}
x=\dfrac{100\times 6\times {{10}^{-7}}}{0.25}
x=4\times {{10}^{-5}}
Intensity at this point is {{I}_{0}}
At y=4\times {{10}^{-5}}\,m
Intensity will be {{I}_{0}}
\dfrac{{{I}_{\max }}}{{{I}_{\min }}}=\dfrac{{{\left( \sqrt{{{I}_{1}}}+\sqrt{{{I}_{2}}} \right)}^{2}}}{{{\left( \sqrt{{{I}_{1}}}-\sqrt{{{I}_{2}}} \right)}^{2}}}=\dfrac{9}{1}
\dfrac{\left( \sqrt{{{I}_{1}}}+\sqrt{{{I}_{2}}} \right)}{\left( \sqrt{{{I}_{1}}}-\sqrt{{{I}_{2}}} \right)}=\dfrac{3}{1}
\sqrt{\dfrac{{{I}_{1}}}{{{I}_{2}}}}=\dfrac{2}{1}
\dfrac{{{I}_{1}}}{{{I}_{2}}}=\dfrac{4}{1}
So, the ratios of their intensities is 4:1
To observe diffraction. the size of the obstacle
Hint :-The critical angle is that angle of incidence for which the angle of refraction in rarer medium is equal to 90.
Step 1: Note the given values and consideration
Let angle of incidence =\theta ,
Angle of refraction =90^o,
Refractive index of liquid =\mu,
Refractive index of air =1
Step 2: Calculate refractive index of liquid
Using Snell's law
\mu \sin \theta =1 \times \sin90
\mu \dfrac{3}{5}=1
\mu =\dfrac{5}{3}
Step 3: Calculate velocity of light in liquid
\dfrac{c}{v}=\mu
\dfrac{c}{v}=\dfrac{5}{3}
v=\dfrac{3\times 3\times {{10}^{8}}}{5}
v=1.8\times {{10}^{8}}m/s
Given that,
Intensity of central bright fringe {{I}_{0}}=8mW/{{m}^{2}}
We know that,
I={{I}_{0}}{{\cos }^{2}}\left( \frac{\phi }{2} \right)
I=8{{\cos }^{2}}\left( \frac{\phi }{2} \right)
Now,
Phase difference = \dfrac{2\pi }{\lambda } x path difference
\phi =\dfrac{2\pi }{\lambda }\times \dfrac{\lambda }{6}
\phi =\dfrac{\pi }{3}
Now, the intensity is
I=8\times {{\cos }^{2}}\left( \dfrac{\pi }{6} \right)
I=8\times \dfrac{\sqrt{3}}{2}\times \dfrac{\sqrt{3}}{2}
I=6\,mW/{{m}^{2}}
Hence, the intensity is 6\,mW/{{m}^{2}}
Given,
As show in figure,
Plane wave front after reflection from concave mirror, turned into spherical wave front.
Hence, spherical wave front will appear.
For constructive
Path difference = n λ
{{S}_{1}}F-{{S}_{2}}F=n\lambda
6m-4m=n\lambda
2\,m=n\lambda
\lambda =\dfrac{n}{2}\,m
Where, n= 0, 1, 2….
So, \lambda =0,0.5\,m,1\,m,\dfrac{3}{2}\,m,2\,m....
Hence, the wave length is 1\ m in constructive interference
In the interference, two light waves are in the phase difference of at a point. If the yellow light is used, then the color of fringes at that point will be:-
Please disable the adBlock and continue. Thank you.