Explanation
Given here,
q_{1} = 120 \times e
q_{2} = e ( charge on proton)
It is based on conservation of energy of proton.
\dfrac{1}{2}mv^2 = k \dfrac{q_1q_2}{R}
v = \sqrt{\dfrac{2Kq_1q_2}{mR}}
Also, we know, de’broglie wavelength,
\lambda =\dfrac{h}{mv}
\lambda = \dfrac{h\sqrt{R}}{\sqrt{2mKq_1q_2}}\\
Thus,
\lambda = \dfrac{h\sqrt{10\times10^{-15}}}{\sqrt{2\times\dfrac{5}{3}\times10^{-27}\times9\times10^9\times120\times e^2}}\\
\lambda =\dfrac{\dfrac{h}{e}\times10^{-7}}{6\times10^{-8}}\\
\lambda =\dfrac{4.2\times10^{-15}\times10^{-7}}{6\times10^{-8}}\\
\lambda =7\times10^{-15}\ m = 7\ fm \\
Option A is correct.
Please disable the adBlock and continue. Thank you.