Explanation
The resultant capacitance is,
\dfrac{1}{C} = \dfrac{1}{4} + \dfrac{1}{8} + \dfrac{1}{4} = \dfrac{5}{8}
C = \dfrac{8}{5} = 1.6{\rm{\mu F}}
Energy stored in capacitor is,
E= \dfrac{1}{2}C{V^2}
= \dfrac{1}{2} \times 1.6 \times {10^{ - 6}} \times {15^2}
= 0.8 \times 225 \times {10^{ - 6}}{\rm{J}}
= 1800\;{\rm{erg}}
Since the capacitors are connected in series so charge flowing through them will be same.
Energy stored in first capacitor of capacitance 0.3\;{\rm{\mu F}} is given by
{E_1} = \frac{{{Q^2}}}{{2{C_1}}}
{E_1} = \frac{{{Q^2}}}{{2 \times 0.3}}
Energy stored in second capacitor of capacitance 0.6\;{\rm{\mu F}} is given by
{E_2} = \frac{{{Q^2}}}{{2{C_2}}}
{E_2} = \frac{{{Q^2}}}{{2 \times 0.6}}
Now ratio of energy stored by the condensers is given by
\frac{{{E_1}}}{{{E_2}}} = \frac{2}{1}
For the first block
Thickness ={{d}_{1}}
Dielectric constant ={{k}_{1}}
Capacitance ={{C}_{1}}
For second block
Thickness ={{d}_{2}}
Dielectric constant ={{k}_{2}}
Capacitance ={{C}_{2}}
Capacitors C1 and C2 are connected in parallel. So equivalent capacitance is : \dfrac{1}{{{C}_{eq}}}=\dfrac{1}{{{C}_{1}}}+\dfrac{1}{{{C}_{2}}}
{{C}_{eq}}=\dfrac{{{C}_{1}}{{C}_{2}}}{{{C}_{1}}+{{C}_{2}}}........(1)
Capacitance in parallel plate capacitor is given as
{{C}_{1}}=\dfrac{{{k}_{1}}{{\varepsilon }_{0}}A}{{{d}_{1}}}\,\,\And \,\,{{C}_{2}}=\dfrac{{{k}_{2}}{{\varepsilon }_{0}}A}{{{d}_{2}}}
So, equation (1) becomes
{{C}_{eq}}=\dfrac{{{k}_{1}}{{k}_{2}}{{\varepsilon }_{0}}A}{{{k}_{1}}{{d}_{2}}+{{k}_{2}}{{d}_{1}}}.............(2)
Equivalent capacitance for the combination is
C=\dfrac{k{{\varepsilon }_{0}}A}{{{d}_{1}}+{{d}_{2}}}.........(2)
From equation (1) and (2)
\dfrac{{{k}_{1}}{{k}_{2}}{{\varepsilon }_{0}}A}{{{k}_{1}}{{d}_{2}}+{{k}_{2}}{{d}_{1}}}=\dfrac{k{{\varepsilon }_{0}}A}{{{d}_{1}}+{{d}_{2}}}
k=\dfrac{{{k}_{1}}{{k}_{2}}({{d}_{1}}+{{d}_{2}})}{{{k}_{1}}{{d}_{2}}+{{k}_{2}}{{d}_{1}}}
Please disable the adBlock and continue. Thank you.