Explanation
Given,
Both capacitors are in series
Capacitance of A & B, $${{C}_{A}}=2\mu F\,\,\And \,\,{{C}_{B}}=3\mu F$$
Total Potential is $${{V}_{T}}=({{V}_{A}}+{{V}_{B}})=10V$$
Let,
Potential difference on capacitor A & B, $${{V}_{A}},\,{{V}_{B}}$$
In series, Capacitor have equal charge
$${{Q}_{A}}={{Q}_{B}}$$
$${{C}_{A}}{{V}_{A}}={{C}_{B}}{{V}_{B}}$$
$$\dfrac{{{V}_{A}}}{{{V}_{B}}}=\dfrac{{{C}_{B}}}{{{C}_{A}}}$$
$$\dfrac{{{V}_{A}}+{{V}_{B}}}{{{V}_{B}}}=\dfrac{{{C}_{B}}+{{C}_{A}}}{{{C}_{A}}}$$
$${{V}_{B}}=\dfrac{{{C}_{A}}({{V}_{A}}+{{V}_{B}})}{{{C}_{B}}+{{C}_{A}}}=\dfrac{2\times 10}{5}=4V$$
$${{V}_{B}}=4V$$
Similarly, $$\dfrac{{{V}_{A}}}{{{V}_{B}}}=\dfrac{{{C}_{B}}}{{{C}_{A}}}\Rightarrow \,\,\,{{V}_{A}}=\dfrac{{{V}_{B}}\times {{C}_{B}}}{{{C}_{A}}}\,\,$$
$$\Rightarrow \,{{V}_{A}}=\dfrac{4\times 3}{2}=6V$$
Potential difference on capacitor A & B, $${{V}_{A}}=6V,\,\,\,\,{{V}_{B}}=4V$$
Initially wire between both capacitors is neutral, as the source is connected. Positive charge moves toward B and negative charge move toward A.
when the dielectric is placed between the capacitor plate charge increase, due to which wire ends B having more positive charge flow toward it and more positive charge flow toward B.
Hence, charge on capacitor $${{C}_{1}}$$ also increase
Capacitance, $${{C}_{1}}=0.1\,\mu F\,\,and\,\,{{C}_{2}}=1\,\mu F$$
In series charge is equal
$$ Q={{C}_{1}}{{V}_{1}}={{C}_{2}}{{V}_{2}} $$
$$ {{V}_{2}}=\dfrac{{{C}_{1}}{{V}_{1}}}{{{C}_{2}}} $$
In series total potential difference is sum of all paternal difference
$$ V={{V}_{1}}+{{V}_{2}} $$
$$ V={{V}_{1}}+\dfrac{{{C}_{1}}{{V}_{1}}}{{{C}_{2}}}={{V}_{1}}\left( \dfrac{{{C}_{2}}+{{C}_{1}}}{{{C}_{2}}} \right) $$
$$ {{V}_{1}}=\dfrac{{{C}_{2}}V}{{{C}_{2}}+{{C}_{1}}}=\dfrac{1\times 500}{1+0.1}=454.54\,V $$
Hence, Potential difference across $$0.1\,\mu F\,\,\,is\,\,\,454.5\,V$$
The rate of growth of charge for the capacitor
$$q=\varepsilon C\left( 1-{{e}^{\dfrac{-t}{RC}}} \right)$$
Let E be the energy stored inside the capacitor.
Then,
$$ E=\dfrac{{{q}^{2}}}{2C} $$
$$ E=\dfrac{{{\varepsilon }^{2}}{{C}^{2}}}{2C}{{\left( 1-{{e}^{\dfrac{-t}{RC}}} \right)}^{2}} $$
$$ E=\dfrac{{{\varepsilon }^{2}}C}{2}\left( 1-{{e}^{\dfrac{-t}{RC}}} \right) $$
Let r be the rate of energy stored inside the capacitor.
$$ r=\dfrac{dE}{dt} $$
$$ r=\dfrac{2{{\varepsilon }^{2}}C}{2}\left( 1-{{e}^{\dfrac{-t}{RC}}} \right)\left( -{{e}^{\dfrac{-t}{RC}}} \right)\left( \frac{-1}{RC} \right) $$
$$ r=\dfrac{{{\varepsilon }^{2}}}{R}\left( 1-{{e}^{\dfrac{-t}{RC}}} \right)\left( {{e}^{\dfrac{-t}{RC}}} \right) $$
Now, at $$t = 0$$
The rate of energy stored is
$$r=\dfrac{{{\varepsilon }^{2}}}{R}$$
Hence, the rate of energy stored inside the capacitor is $$\dfrac{{{\varepsilon }^{2}}}{R}$$
$${V_1} = {Q \over {{C_1}}},{V_2} = {Q \over {{C_2}}}$$
$$ - {\varepsilon _1} + {V_1} - {\varepsilon _2} + {V_2} = 0$$
$$\left( {{\varepsilon _1} + {\varepsilon _2}} \right) = {V_1} + {V_2}$$
$${\varepsilon _1} + {\varepsilon _2} = {Q \over {{C_1}}} + {Q \over {{C_2}}}$$
$$Q = \left( {{\varepsilon _1} + {\varepsilon _2}} \right)\left( {{{{C_1}{C_2}} \over {{C_1} + {C_2}}}} \right)$$
$${V_2} = {Q \over {{C_2}}}$$
$${V_2} = \left( {{\varepsilon _1} + {\varepsilon _2}} \right)\left( {{{{C_1}} \over {{C_1} + {C_2}}}} \right)$$
A circuithas a section AB as shown in figure with E=$${\text{10}}\;\;{\text{V,}}\;{{\text{C}}_{{\text{1}}\;}}{\text{ = }}$$ 1.0 $$\mu F$$$${{\text{C}}_{\text{2}}}\;{\text{ = }}\;{\text{2}}{\text{.0}}$$ $$\mu F$$and the potential difference $${{\text{V}}_{\text{A}}}\;{\text{ - }}{{\text{V}}_{\text{B}}}{\text{ = 5}}\;{\text{V}}$$ Thevoltage across $${{\text{C}}_{\text{1}}}$$ is :
Please disable the adBlock and continue. Thank you.