CBSE Questions for Class 12 Medical Physics Nuclei Quiz 12 - MCQExams.com

Mark out the correct statement(s)
  • in both fission and fusion processes, the mass of reactant nuclide is greater than the mass of product nuclide
  • in fission process, BE per nucleon of reactant nuclide is less than the binding energy per nucleon of product nuclide
  • in fusion process, BE per nucleon of reactant nuclide is less than the binding energy per nucleon of product nuclide
  • in fusion process, BE per nucleon of reactant nuclide is greater than the binding energy per nucloen of product nuclide
A proton and a neutron are both shot at $$100 ms^{-1}$$ toward a $$_6^{12}C$$ nucleus. Which particle, if either, is more likely to be absorbed by the nucleus?
  • The proton.
  • The neutron.
  • Both particles are about equally likely to be absorbed.
  • Neither particle will be absorbed.
Instantaneous power developed at time t due to the decay of the radionuclide is
  • $$\left (q_0t-\frac {q_0}{\lambda}+\frac {q_0}{\lambda}e^{-\lambda t}\right )E_0$$
  • $$\left (q_0t+\frac {q_0}{\lambda}-\frac {q_0}{\lambda}e^{-\lambda t}\right )E_0$$
  • $$\left (q_0t+\frac {q_0}{\lambda}+\frac {q_0}{\lambda}e^{-\lambda t}\right )E_0$$
  • $$\left (q_0t-\frac {q_0}{\lambda}-\frac {q_0}{\lambda}e^{-\lambda t}\right )E_0$$
Why is a $$_2^4He$$ nucleus more stable than a $$_3^4Li$$ nucleus?
  • The strong nuclear force is larger when the neutron-to-proton ratio is higher.
  • The laws of nuclear physics forbid a nucleus from containing more protons than neutrons.
  • Forces other than the strong nuclear force make the lithium nucleus less stable.
  • None of the above.
Four physical quantities are listed in Column I. Their values are listed in Column II in a random order.
Column I
Column II
p. Thermal energy of air molecules at room temperature
(i) 0.02 eV
q. Binding energy of heavy nuclei per nucleon
(ii) 2 eV
r. X-ray photon energy
(iii) 10 keV
s. Photon energy of visible light
(iv) 7 MeV
The correct matching the Column I and Column II is given by
  • $$p\rightarrow i, q\rightarrow iv, r\rightarrow iii, s\rightarrow ii$$
  • $$p\rightarrow i, q\rightarrow iii, r\rightarrow ii, s\rightarrow iv$$
  • $$p\rightarrow ii, q\rightarrow i, r\rightarrow iii, s\rightarrow iv$$
  • $$p\rightarrow ii, q\rightarrow iv, r\rightarrow i, s\rightarrow iii$$
The equation $$4_1^1H^{2}\rightarrow _2^4He^{2+}+2e^{+1}+26\  MeV$$ represents
  • $$\beta-decay$$
  • $$\gamma-decay$$
  • $$fusion$$
  • $$fission$$
In the core of nuclear fusion reactor, the gas becomes plasma because of
  • strong nuclear force acting between the deuterons
  • coulomb force acting between the deuterons
  • coulomb force acting between deuteron-electron pairs
  • the high temperature maintained inside the reactor core
The correct statement is
  • the nucleus $$_3^6Li$$ can emit an alpha particle
  • the nucleus $$_{84}^{210}Po$$ can emit a proton
  • deuteron and alpha particle can undergo complete fusion
  • the nuclei $$_{30}^{70}Zn$$ and $$_{34}^{82}Se$$ can undergo complete fusion
A nucleus with mass number $$220$$ initially at rest emits an $$\alpha \ particle$$. If the $$Q$$ value of the reaction is $$5.5 MeV$$, calculate the kinetic energy of the $$\alpha\ particle$$
  • $$4.4 MeV$$
  • $$5.4 MeV$$
  • $$5.6 MeV$$
  • $$6.5 MeV$$
Assume that the nuclear binding energy per nucleon (B/A) versus mass number (A) is as shown in the figure. Use this plot to choose the correct choice(s) given below:

173874.png
  • Fusion of two nuclei with mass numbers lying in the range of $$1 < A < 50$$ will release energy.
  • Fusion of two nuclei with mass numbers lying in the range of $$51 < A < 100$$ will release energy.
  • Fission of a nucleus lying in the mass range of $$100 < A < 200$$ will release energy when broken into two equal fragments.
  • Fission of a nucleus lying in the mass range of $$200 < A < 260$$ will release energy when broken into two equal fragments.
The rest energy of an electron is $$0.511 MeV.$$ The electron is accelerated from rest to a velocity $$0.5 c$$. The change in its energy will be
  • $$0.026 MeV$$
  • $$0.051 MeV$$
  • $$0.07 MeV$$
  • $$0.105 MV$$
Binding energy per nucleon vs. mass number curve for nuclei is shown in fig. W, X, Y and Z are four nuclei indicated on the curve. The process that would release energy is

173777_1cc94a8ec4b847b6aef06f80d429d9cd.JPG
  • $$Y\rightarrow 2Z$$
  • $$W\rightarrow X+Z$$
  • $$W\rightarrow 2Y$$
  • $$X\rightarrow Y+Z$$
Let $$m_p$$ be the mass of proton, $$m_n$$ the mass of a neutron, $$M_1$$ the mass of a $$_{10}^{20}Ne$$ nucleus, and $$M_2$$ the mass of a $$_{20}^{40}Ca$$ nucleus. Then
  • $$M_2=2M_1$$
  • $$M_2 > 2M_1$$
  • $$M_2 < 2M_1$$
  • $$M_1 < 10(m_p+m_p)$$
The binding energies per nucleon for a deuteron and an  -particle are  $${ x }_{ 1} ,{ x}_{ 2 }$$ respectively. What will be the energy Q released in the reaction $$_{ 1 }^{ }{ { H }_{ }^{ 2 } }+_{ 1 }^{ }{ { H }_{ }^{ 2 } }\rightarrow _{ 2 }^{ }{ { He }_{ }^{ 4 } }+Q$$
  • $$4\left( { x }_{ 1 }+{ x }_{ 2 } \right)$$
  • $$4\left( { x }_{ 2 }-{ x }_{ 1 } \right)$$
  • $$2\left( { x }_{ 1 }+{ x }_{ 2 } \right)$$
  • $$2\left( { x }_{ 2 }-{ x }_{ 1 } \right)$$
The K.E. of the emitted $$\alpha-particle$$ in the decay of $$^{226}_{88}Ra$$ (approximately)
  • 2.3 MeV
  • 4.85 MeV
  • 9.7 MeV
  • 14 MeV
Results of calculations for four different designs of a fusion reactor using D-D reaction are given below. Which of these is most promising based on Lawson criterion?
  • Deuteron density=2.0 x $${ 10 }^{ 12 }{ cm }^{ -3 }$$ ,confinement time=5.0 x $${ 10 }^{ -3 }$$s
  • Deuteron density=8.0 x $${ 10 }^{ 14 }{ cm }^{ -3 }$$ ,confinement time=9.0 x $${ 10 }^{ -1 }$$s
  • Deuteron density=4.0 x $${ 10 }^{ 23 }{ cm }^{ -3 }$$ ,confinement time=1.0 x $${ 10 }^{ -11 }$$s
  • Deuteron density=1.0 x $${ 10 }^{ 24 }{ cm }^{ -3 }$$ ,confinement time=4.0 x $${ 10 }^{ -12 }$$s
The Q-value for the $$\alpha-decay$$ of $$^{226}_{88}Ra$$ is (approximately)
  • 4.93 MeV
  • 2.46 MeV
  • 9.8 MeV
  • 14.7 MeV
Which of the following nuclear reactions is not possible?
  • $$ _{ 6 }^{ 12 }{ C+ }_{ 6 }^{ 12 }{ C }\longrightarrow _{ 10 }^{ 20 }{ Ne+ }_{ 2 }^{ 4 }{ He }$$
  • $$_{ 4 }^{ 9 }{ Be+ }_{ 1 }^{ 1 }{ H }\longrightarrow _{ 3 }^{ 6 }{ Li+ }_{ 2 }^{ 4 }{ He }$$
  • $$_{ 5 }^{ 11 }{ Be+ }_{ 1 }^{ 1 }{ H }\longrightarrow _{ 4 }^{ 9 }{ Be+ }_{ 2 }^{ 4 }{ He }$$
  • $$_{ 3 }^{ 7 }{ Li+ }_{ 2 }^{ 4 }{ He }\longrightarrow _{ 1 }^{ 1 }{ H+ }_{ 4 }^{ 10 }{ B }$$
The velocity of a body of rest mass $$m_o$$ is $$\dfrac{\sqrt 3}{2} c$$ (where c is the velocity of light in vacuum). The mass of this body is : 
  • $$ \left ( \dfrac{\sqrt3}{2} \right )m_o$$
  • $$\left ( \dfrac{1}{2} \right )m_o$$
  • $$3m_o$$
  • $$2m_o$$
Find Binding energy of an $$\alpha-$$particle in $$MeV$$?
$$[m_{proton}=1.007825\ amu, m_{neutron}=1.008665\ amu, m_{helium}=4.002800\ amu]$$
  • $$28.097\ eV$$
  • $$28.097\ MeV$$
  • $$38.097\ eV$$
  • $$48.097\ MeV $$
Calculate the binding energy of $$_{3}^{6}\textrm{Li}$$ assuming the mass of $$_{3}^{6}\textrm{Li}$$ atom as $$6.01512$$ amu:
  • $$20.42 MeV$$
  • $$30.42 MeV$$
  • $$23.08 MeV$$
  • $$32.78 MeV$$
A neutron of kinetic energy $$65\ eV$$ collides inelastically with a singly ionized helium atom at rest. It is scattered at an angle of $$90^{\circ}$$ with respect to its original direction.
Find the allowed values of the energy of the neutron and that of the atom after the collision.
[Given : Mass of $$He\ atom = 4\times$$ (mass of neutron) Ionization energy of $$H$$ atom $$=6\ eV$$]
  • $$7.36\ eV, 0.312, 17.8\ eV; 16.328\ eV$$.
  • $$6.36\ eV, 0.312, 17.8\ eV; 16.328\ eV$$.
  • $$6.36\ eV, 0.312, 87.8\ eV; 16.328\ eV$$.
  • $$6.36\ eV, 0.312, 17.8\ eV; 26.328\ eV$$.
A system of binary stars of masses $$m_A$$ and $$m_B$$ are moving in circular orbits of radii $$r_A$$ and $$r_B$$, respectively. If $$T_A$$ and $$T_B$$ are the time periods of masses $$m_A$$ and $$m_B$$, respectively then.
  • $$\dfrac{T_A}{T_B}=\left(\dfrac{r_A}{r_B}\right)^{\dfrac{3}{2}}$$
  • $$T_A > T_B$$(if $$r_A > r_B$$)
  • $$T_A > T_B$$(if $$m_A > m_B$$)
  • $$T_A = T_B$$
If $${M}_{o}$$ is the mass of an oxygen isotope $$ { _{ 8 }^{  }{ O } }^{ 17 },{ M }_{ P },{ M }_{ N }$$ are the masses of a proton and a neutron respectively, the nuclear binding energy of the isotope is (The speed of light is C)
  • $$\left( { M }_{ O }-8{ M }_{ P } \right) { C }^{ 2 }$$
  • $$\left( { M }_{ O }-8{ M }_{ P }-9{ M }_{ N } \right) { C }^{ 2 }$$
  • $${ M }_{ O }{ C }^{ 2 }$$
  • $$\left( { M }_{ O }-17{ M }_{ N } \right) { C }^{ 2 }$$
A nucleus $$^{A}_{Z}X$$ has mass represented by $$m(A, Z)$$. If $$m_p$$ and $$m_n$$ denote the mass of proton and neutron respectively and BE the binding energy(in MeV) then.
  • $$BE=[m(A_1Z)-Zm_p-(A-Z)m_n]C^2$$
  • $$BE=[Zm_p+(A-Z)m_n-m(A,Z)]C^2$$
  • $$BE=[Zm_p+Am_n-m(A,Z)]C^2$$
  • $$BE=m(A_1Z)-Zm_p-(A-Z)m_N$$
Outside nucleus
  • neutron is stable
  • neutron is unstable
  • proton and neutron both are stable
  • none of these
Binding energies of $$ _1H^2 , _2He^4 , _{26}Fe^{56} , $$ and $$_{92}U^{235}$$ nuclie are $$2.22 Me V,28.4 MeV , 492MeV $$ and $$1786MeV$$ respectively which one of the following is more stable?
  • $$_1H^2$$
  • $$_2He^4$$
  • $$_{26}Fe^{56}$$
  • $$_{92}U^{235}$$
$$\begin{matrix} M \\ Z \end{matrix}A(g)\longrightarrow \begin{matrix} M-B \\ Z-4 \end{matrix}B(g)+(\alpha -particals)$$
($$\alpha$$-particales are helium nuclei,so will form helium gas by trapping electrons)
The radioactive disintegration follows first-order kinetic Starting with 1 mol of A in a 1-litre closed flask at $$27^oC$$ pressure developed after two half-lives is approximately:
  • 25 atm
  • 12 atm
  • 61.5 atm
  • 40atm
P and Q are two elements which form $${ P }_{ 2 }{ Q }_{ 3 }$$ and $${ PQ }_{ 2 }$$. If 0.15 mole of $${ P }_{ 2 }{ Q }_{ 3 }$$ weight 15.9 g and 0.15mole of $${ PQ }_{ 2 }$$ weight 9.3 g. what are atomic weights of P and Q respectively?
  • 18 and 26 
  • 26 and 26
  • 26 and 18
  • 18 and 18
If the binding energy per nucleon in $$_{3}^{7}Li$$ and $$_{2}^{4}He$$ nuclei are $$5.60\ MeV$$ and $$7.06\ MeV$$ respectively, then in the reaction : $$p + _{3}^{7}Li \rightarrow 2_{2}^{4}He$$ energy of proton must be
  • $$28.24\ MeV$$
  • $$17.28\ MeV$$
  • $$1.46\ MeV$$
  • $$39.2\ MeV$$
Assuming that $$200\ MeV$$ of energy is released per fission of $$_{92}U^{235}$$ atom. Find the number of fission per second ,required to release $$1\ kW$$ power.
  • $$3.125\ \times 10^{13}$$
  • $$3.125\ \times 10^{14}$$
  • $$3.125\ \times 10^{15}$$
  • $$3.125\ \times 10^{16}$$
An electron collides with a fixed hydrogen atom in its ground state. Hydrogen atom gets excited and the colliding electron loses ail its kinetic energy. Consequently the hydrogen atom may emit a photon corresponding to the largest wavelength of the Balmer series. The min. K.E. of colliding electron will be
  • $$10.2$$ eV
  • $$1.9$$ eV
  • $$12.1$$ eV
  • $$13.6$$ eV
In a laboratory experiment on emission from atomic hydrogen in a discharge tube, only a small number of lines are observed where as a lines are present in the hydrogen spectrum of a star. This is because in a laboratory  
  • The amount of hydrogen taken is much smaller than that present in the star
  • The temperature of hydrogen is much smaller than that of the star
  • The pressure of hydrogen is much smaller than that of the star
  • The gravitational pull is much larger than that in the star
A nucleus $$_Z{X}^A$$ emits $$9 \alpha$$-particles and $$5p$$ particle. The ration of total protons and neutrons in the final nucleus is:-
  • $$\dfrac{(Z - 13)}{(A - Z - 23)}$$
  • $$\dfrac{(Z - 18)}{(A - 36)}$$
  • $$\dfrac{(Z - 23)}{(A - Z-8)}$$
  • $$\dfrac{(Z - 13)}{(A - Z - 13)}$$
If $$_{ a }^{ b }{ X }$$ emits a positron, two $$\alpha $$ and two $$\beta^- $$ and in last one $$\alpha $$ is also emitted and converts in  $$_{ d }^{ c }{ Y }$$, correct relation:
  • $$c=b-12, d=a-5$$
  • $$a=c-8, d=b-1$$
  • $$a=c-6, d=b-0$$
  • $$a=c-4, a=b-2$$
$$_{92}U^{238}$$ on absorbing a neutron goes over to $$_{92}U^{239}$$. This nucleus emits an electron to go over to neptunium which on further emitting an electron goes over to plutonium. The plutonium nucleus can be expressed as:
  • $$_{94}Pu^{239}$$
  • $$_{92}Pu^{239}$$
  • $$_{93}Pu^{240}$$
  • $$_{92}Pu^{240}$$
A radioactive nucleus $$_ZX^A$$ emits $$3 \alpha$$-particles and $$5 \beta$$-particles. The ratio of number of neutron, protons in the product nucleus will be :- 
  • $$\dfrac{A-Z-12}{Z-6}$$
  • $$\dfrac{A-Z}{Z-1}$$
  • $$\dfrac{A-Z-11}{Z-1}$$
  • $$\dfrac{A-Z-12}{Z-1}$$
A nucleus of mass $$M$$ is at rest. An alpha particle of mass $$m$$ is emitted from the nucleus with momentum $$P. Q$$ value of the nuclear reaction is :
  • $$\dfrac {p^{2}M}{2m(M + m)}$$
  • $$\dfrac {p^{2}m}{2m(M + m)}$$
  • $$\dfrac {p^{2}M}{2m(M - m)}$$
  • $$\dfrac {p^{2}m}{2m(M - m)}$$
$$\begin{array} { l } { \text { Initial ratio of active nuclei in two different samples } } \\ { \text { is } 2 : 3 . \text { Their half lives are } 2 \text { hr and } 3 \text { hr respectively. } } \\ { \text { Ratio of their activities at the end of } 12 \text { hr is: } } \end{array}$$
  • $$1 : 6$$
  • $$6 : 1$$
  • $$1 : 4$$
  • $$4 : 1$$
In a hydrogen atom, the binding energy of the electron in the ground state is $$E_{1}.$$ Then the frequency of revolution of nth electron in the nth orbits is
  • $$\frac{2E_{1}}{nh}$$
  • $$\frac{2E_{1}n^{3}}{h}$$
  • $$\sqrt{\frac{2mE_{1}}{n^{3}h}}$$
  • $$\frac{2E_{1}n^{2}}{h}$$
In the uranium radioactive series the initial nucleus is $$_{92} U^{238},$$ and the final nucleus is $$_{82} U^{206}.$$ When the Uranium nucleus decays to lead, the number of $$\alpha-particles$$ emitted are... and the number of $$\beta-particles$$ emitted are...
  • $$6, 8$$
  • $$8, 6$$
  • $$16, 6$$
  • $$32, 12$$
The aver age energy gy released in the fission of $$ _{92}U^{235} $$ is 200 MeV. The total energy released when one gram of $$ _{92}U^{235} $$ completely undergoes fission is about 
  • $$ 2.3 \times 10^4 kWh $$
  • $$ 2.3 \times 10^5 kWh $$
  • $$ 2.3 \times 10^3 kWh $$
  • $$ 2.3 \times 10^6 kWh $$
In which sequence the radioactive radiations are emitted in the following nuclear reaction?
$$_{Z}X^{A} \rightarrow _{Z+1}Y^{A} \rightarrow _{Z-1}K^{A-4}  \rightarrow _{Z-1}K^{A-4}$$
  • $$\gamma, \alpha ,\beta$$
  • $$\alpha ,\beta,\gamma$$
  • $$\beta,\gamma,\alpha$$
  • $$\beta,\alpha,\gamma$$
If the binding energy per nucleon in $$ ^7_3Li and ^4_2 He $$  nuclei are 5.60 MeV and 7.06 MeV respectively, then in the reaction
   $$ p + ^7_3 Li \rightarrow 2^4_2 He $$
energy of proton must be :
  • 39.2 MeV
  • 28.24 MeV
  • 17.28 MeV
  • 1.46 MeV
A nucleus of mass M +$$\triangle m$$ is at rest and decays into daughter nucleus of equal mass $$\dfrac { M }{ 2 } $$ each 
speed of light is c 
The speed of daughter nuclei is:-

  • $$c\sqrt { \dfrac { \triangle m }{ m+\triangle } } $$
  • $$c\sqrt { \dfrac { \triangle m }{ m+\triangle m } } $$
  • $$c\sqrt { \dfrac { 2\triangle m}{ m } } $$
  • $$c\sqrt { \dfrac { \triangle m }{ m } } $$
Atomic mass of $$_ { 26 } \mathrm { F } { \mathrm { e } } \text { is } 55.9349 \mathrm { u }$$ and that of $$H \text { is } 1.00783 u$$.Mass of neutron is $$1.00867 \mathrm { u }$$ and $$\mathrm { 1u } = 931 \mathrm { MeV } / \mathrm { c } ^ { 2 }$$ then binding energy of $$_{ 26 }^{ 56 }{ { F }_{ e } }$$ is
  • $$492 \mathrm { MeV }$$
  • $$480 \mathrm { MeV }$$
  • $$475 \mathrm { MeV }$$
  • $$450 \mathrm { MeV }$$
In the options given below, let E denote the rest mass energy of a nucleus and n neutron. The correct option is.
  • $$E\left( \begin{matrix} 236 \\ 92 \end{matrix}U \right) >E\left( \begin{matrix} 137 \\ 53 \end{matrix}I \right) +E\left( \begin{matrix} 97 \\ 39 \end{matrix}Y \right) +2E(n)$$
  • $$E\left( \begin{matrix} 236 \\ 92 \end{matrix}U \right) \quad <\quad E\left( \begin{matrix} 137 \\ 53 \end{matrix}I \right) +E\left( \begin{matrix} 97 \\ 39 \end{matrix}Y \right) +2E(n)$$
  • $$E\left( \begin{matrix} 236 \\ 92 \end{matrix}U \right) <\quad E\left( \begin{matrix} 140 \\ 56 \end{matrix}Ba \right) +E\left( \begin{matrix} 94 \\ 36 \end{matrix}Kr \right) +2E(n)$$
  • $$E\left( \begin{matrix} 236 \\ 92 \end{matrix}U \right) =\quad E\left( \begin{matrix} 140 \\ 56 \end{matrix}Ba \right) +E\left( \begin{matrix} 94 \\ 36 \end{matrix}Kr \right) +2E(n)$$
In the nuclear reaction, $$X\left( {n,\alpha } \right){ \to _3}L{i^7}$$ which of the following option is correct?
  • $$X{ = _5}{\beta ^{10}}$$, $$\alpha $$ -deacy result in decrease of atomic number
  • $$X{ = _5}{\beta ^{10}}$$, only $${\beta ^ + }$$- decay result in increase of atomic number
  • $$X{ = _5}{\beta ^{11}}$$, $$\alpha $$-decay result in increase of atomic number
  • $$X{ = _5}{\beta ^{11}}$$, $$\alpha $$- and $${\beta ^ + }$$-decay result in decrease of atomic number
The binding energies per nucleon of deutron and $$\alpha - particles$$ are $$X_1$$ and $$X_2$$ respectively. The energy released in the following reaction will be: $$1{H}^2 + 1{H}^2 = 2{He}^4 + Q$$
  • $$(X_1 + X_2)$$
  • $$(X_2 - X_1)$$
  • $$4(X_1 + X_2)$$
  • $$4(X_2 - X_1)$$
Binding energy per nucleon of deutron in 1.112 MeV and binding energy per nucleon of a $$\alpha$$-particle is 7.07 MeV, then in following process, energy Q is :-  $$2(1_H^2)\rightarrow _2He^4+ Q $$
  • 1 MeV
  • 23.8 MeV
  • 11.9 MeV
  • 931 MeV
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 12 Medical Physics Quiz Questions and Answers