Explanation
Given that,
Band gap of $${{D}_{1}}=2.5\,eV$$
Band gap of $${{D}_{2}}=2\,eV$$
Band gap of $${{D}_{3}}=3\,eV$$
Wave length $$\lambda =6000\overset{\circ }{\mathop{A}}\,$$
Now, the wave length for $$2.5\ eV$$
$$ {{\lambda }_{1}}=\dfrac{hc}{E} $$
$$ {{\lambda }_{1}}=\dfrac{6.6\times {{10}^{-34}}\times 3\times {{10}^{8}}}{2.5\times 1.6\times {{10}^{-19}}} $$
$$ {{\lambda }_{1}}=4.95\times {{10}^{-7}}\,m $$
Now, for $$2\ eV$$
$$ {{\lambda }_{2}}=\dfrac{hc}{E} $$
$$ {{\lambda }_{2}}=\dfrac{6.6\times {{10}^{-34}}\times 3\times {{10}^{8}}}{2\times 1.6\times {{10}^{-19}}} $$
$$ {{\lambda }_{2}}=6.2\times {{10}^{-7}}\,m $$
Now, for $$3\ eV$$
$$ {{\lambda }_{3}}=\dfrac{hc}{E} $$
$$ {{\lambda }_{3}}=\dfrac{6.6\times {{10}^{-34}}\times 3\times {{10}^{8}}}{3\times 1.6\times {{10}^{-19}}} $$
$$ {{\lambda }_{3}}=4.13\times {{10}^{-7}}\,m $$
For detection of optical signal the wave length of incident energy radiation must be greater.
So, only $${{D}_{2}}$$can detect the radiation
The resistivity of a pure semiconductor is $$0.5 \Omega\ m$$. If the electron and hole mobility be $$0.39$$ $$m^2/V-s$$ and $$0.19$$ $$m^2/V-s$$ respectively then calculate the intrinsic carrier concentration.
Please disable the adBlock and continue. Thank you.