Loading [MathJax]/jax/output/CommonHTML/jax.js
MCQExams
0:0:2
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 7 Maths Algebraic Expressions Quiz 4 - MCQExams.com
CBSE
Class 7 Maths
Algebraic Expressions
Quiz 4
An expression is taken away from
3
x
2
−
4
y
2
+
5
x
y
+
20
to obtain
−
x
2
−
y
2
+
6
x
y
+
20
, then the expression is __________.
Report Question
0%
4
x
2
−
3
y
2
−
x
y
0%
2
x
2
−
5
y
2
+
x
y
+
40
0%
3
y
2
−
x
y
−
4
x
2
0%
4
x
2
+
3
y
2
+
x
y
Explanation
We are given two expression
3
x
2
−
4
y
2
+
5
x
y
+
20
................................(1)
−
x
2
−
y
2
+
6
x
y
+
20
................................(2)
An expression is taken away from (1) to obtain (2) is given by
3
x
2
−
4
y
2
+
5
x
y
+
20
−
(
−
x
2
−
y
2
+
6
x
y
+
20
)
=
3
x
2
−
4
y
2
+
5
x
y
+
20
+
x
2
+
y
2
−
6
x
y
−
20
)
=
4
x
2
−
3
y
2
−
x
y
Simplify :
(
a
3
−
2
a
2
+
4
a
−
5
)
−
(
−
a
3
−
8
a
+
2
a
2
+
5
)
.
Report Question
0%
2
a
3
+
7
a
2
+
6
a
−
10
0%
2
a
3
+
7
a
2
+
12
a
−
10
0%
2
a
3
−
4
a
2
+
12
a
−
10
0%
2
a
3
−
4
a
2
+
6
a
−
10
Explanation
We need to simplify
(
a
3
−
2
a
2
+
4
a
−
5
)
−
(
−
a
3
−
8
a
+
2
a
2
+
5
)
=
a
3
−
2
a
2
+
4
a
−
5
+
a
3
+
8
a
−
2
a
2
−
5
=
(
a
3
+
a
3
)
+
(
−
2
a
2
−
2
a
2
)
+
(
4
a
+
8
a
)
−
10
=
2
a
3
−
4
a
2
+
12
a
−
10
By how much is
a
4
+
4
a
2
b
2
+
b
4
more than
a
4
−
8
a
2
b
2
+
b
4
?
Report Question
0%
12
a
2
b
2
0%
−
12
a
2
b
2
0%
2
a
4
+
2
b
4
0%
10
a
2
b
2
Explanation
Required expression
=
(
a
4
+
4
a
2
b
2
+
b
4
)
−
(
a
4
−
8
a
2
b
2
+
b
4
)
=
a
4
+
4
a
2
b
2
+
b
4
−
a
4
+
8
a
2
b
2
−
b
4
=
12
a
2
b
2
Subtract
(
2
a
−
3
b
+
4
c
)
from the sum of
(
a
+
3
b
−
4
c
)
,
(
4
a
−
b
+
9
c
)
and
(
−
2
b
+
3
c
−
a
)
.
Report Question
0%
3
a
+
2
b
+
4
c
0%
2
a
−
2
b
+
4
c
0%
3
a
−
4
b
−
2
c
0%
2
a
+
3
b
+
4
c
Explanation
It is instructed to subtract
(
2
a
−
3
b
+
4
c
)
from the sum of
(
a
+
3
b
−
4
c
)
,
(
4
a
−
b
+
9
c
)
and
(
−
2
b
+
3
c
−
a
)
.
So, First we will do the sum of the three given polynomials,
Sum
=
(
a
+
3
b
−
4
c
)
+
(
4
a
−
b
+
9
c
)
+
(
−
2
b
+
3
c
−
a
)
=
(
a
+
4
a
−
a
)
+
(
3
b
−
b
−
2
b
)
+
(
−
4
c
+
9
c
+
3
c
)
=
4
a
+
8
c
Now, we can perform the subtraction,
∴
Required difference
=
(
4
a
+
8
c
)
−
(
2
a
−
3
b
+
4
c
)
=
4
a
+
8
c
−
2
a
+
3
b
−
4
c
=
2
a
+
3
b
+
4
c
Add the following:
2
p
2
q
2
−
3
p
q
+
4
,
5
+
7
p
q
−
3
p
2
q
2
Report Question
0%
−
p
2
q
2
−
4
p
q
+
9
0%
−
p
2
q
2
+
4
p
q
+
9
0%
−
p
2
q
2
+
2
p
q
−
9
0%
None of these
Explanation
2
p
2
q
2
−
3
p
q
+
4
+
5
+
7
p
q
−
3
p
2
q
2
=
2
p
2
q
2
−
3
p
2
q
2
−
3
p
q
+
7
p
q
+
9
=
−
p
2
q
2
+
4
p
q
+
9
add
2
x
and
3
x
:-
Report Question
0%
9
x
0%
3
x
0%
5
x
0%
7
x
Explanation
2
x
+
3
x
=
(
2
+
3
)
x
=
5
x
State true or false
We can add or subtract like terms in an algebraic expression.
Report Question
0%
True
0%
False
Explanation
We can always subtract like terms in an algebraic expression and same is true for addition.
Ex: Let
a
x
2
−
b
x
2
+
c
x
+
d
x
+
e
=
0
is a algebraic expression then this can be writtens as
x
2
(
a
−
b
)
+
x
(
c
+
d
)
+
e
=
0
Answer :
(
A
)
If we subtract a monomial from a binomial, then answer is atleast a binomial
Report Question
0%
True
0%
False
Explanation
Consider a binomial
−
2
x
y
+
z
and a monomial
−
z
.
If we add
−
2
x
y
+
z
and
−
z
, we get
−
2
x
y
+
z
+
−
z
=
−
2
x
y
, which is a monomial.
So the result need not be a binomial.
Hence, the given statement is False.
Sum of
x
2
+
x
and
y
+
y
2
is
2
x
2
+
2
y
2
Report Question
0%
True
0%
False
Explanation
The sum of
x
2
+
x
and
y
+
y
2
is given by
(
x
2
+
x
)
+
(
y
+
y
2
)
=
x
2
+
y
2
+
x
+
y
Therefore, Sum of
x
2
+
x
and
y
+
y
2
is not
2
x
2
+
2
y
2
.
Hence, the given statement is False.
State True or False:When we add a monomial and a trinomial, then answer can be a monomial.
Report Question
0%
True
0%
False
Explanation
Consider a trinomial
3
x
y
+
x
+
5
and monomial
−
x
and
3
x
y
∙
If we subtract
3
x
y
from
3
x
y
+
x
+
5
, we get
x
+
5
which is a binomial
∙
if we subtract
−
x
from
3
x
y
+
x
+
5
, we get
3
x
y
+
2
x
+
5
which is a trinomial..
We know that, a binomial or a trinomial is a polynomial.
Therefore, when we subtract a monomial from a trinomial, then answer will be a polynomial.
Hence, given statement is True.
The sum of
−
7
p
q
and
2
p
q
is
Report Question
0%
−
9
p
q
0%
9
p
q
0%
5
p
q
0%
−
5
p
q
Explanation
Guven monomials are
−
7
p
q
and
2
p
q
∴
Required sum
=
(
−
7
p
q
)
+
(
2
p
q
)
−
7
p
q
+
2
q
=
(
−
7
+
2
)
p
q
[
∵
−
7
p
q
and
2
p
q
are like terms
]
=
−
5
p
q
Hence, the correct answer is option (D).
If we subtract
−
3
x
2
y
2
from
x
2
y
2
, then we get
Report Question
0%
−
2
x
2
y
2
0%
−
4
x
2
y
2
0%
2
x
2
y
2
0%
4
x
2
y
2
Explanation
Given monomials are :
−
3
x
2
y
2
from
x
2
y
2
Required difference
=
(
x
2
y
2
)
−
(
−
3
x
2
y
2
)
=
x
2
y
2
+
3
x
2
y
2
=
(
1
+
3
)
x
2
y
2
[Since the given monomials are like terms]
=
4
x
2
y
2
Hence, option (D) is the correct answer.
Sum of
a
−
b
+
a
b
,
b
+
c
−
b
c
and
c
−
a
−
a
c
is
Report Question
0%
2
c
+
a
b
−
a
c
−
b
c
0%
2
c
−
a
b
−
a
c
−
b
c
0%
2
c
+
a
b
+
a
c
+
b
c
0%
2
c
−
a
b
+
a
c
+
b
c
Explanation
Sum of
a
−
b
+
a
b
,
b
+
c
−
b
c
and
c
−
a
−
a
c
=
(
a
−
b
+
a
b
)
+
(
b
−
c
−
b
c
)
+
(
c
−
a
−
a
c
)
=
a
−
b
+
a
b
+
b
+
c
−
b
c
+
c
−
a
−
a
c
Rearranging and collecting like terms,
=
a
−
a
−
b
+
b
+
c
+
c
+
a
b
−
b
c
−
a
c
=
2
c
+
a
b
−
a
c
−
b
c
Hence, option (A) is correct.
−
x
y
−
(
−
5
x
y
)
is equal to
Report Question
0%
−
6
x
y
0%
6
x
y
0%
−
4
x
y
0%
4
x
y
Explanation
−
x
y
−
(
−
5
x
y
)
=
−
x
y
+
5
x
y
=
(
−
1
+
5
)
x
y
=
4
x
y
State the following statement is true or false.
Sum of
2
and
p
is
2
p
.
Report Question
0%
True
0%
False
Explanation
Sum of
2
and
p
is
2
+
p
not
2
p
.
Simplify:
2
x
2
y
−
3
x
y
2
+
2
x
2
y
−
4
x
2
y
+
2
x
y
2
Report Question
0%
4
x
2
y
+
2
x
y
2
0%
2
x
2
y
−
8
x
y
0%
−
x
y
2
0%
−
x
y
−
2
x
+
y
2
Explanation
2
x
2
y
−
3
x
y
2
+
2
x
2
y
−
4
x
2
y
+
2
x
y
2
=
(
2
x
2
y
+
2
x
2
y
−
4
x
2
y
)
+
(
−
3
x
y
2
+
2
x
y
2
)
,
(Arranging like terms together)
=
0
−
x
y
2
=
−
x
y
2
Hence simplified form of the given expression is
−
x
y
2
From the sum of
z
3
+
3
z
2
+
5
z
+
8
and
4
z
3
+
2
z
2
−
7
z
−
2
subtract
2
z
3
−
3
z
2
+
z
−
4
.
Report Question
0%
0
0%
8
z
2
−
3
z
0%
3
z
3
+
8
z
2
−
3
z
+
10
0%
2
−
z
Explanation
The sum of
z
3
+
3
z
2
+
5
z
+
8
and
4
z
3
+
2
z
2
−
7
z
−
2
is,
=
z
3
+
3
z
2
+
5
z
+
8
+
4
z
3
+
2
z
2
−
7
z
−
2
=
5
z
3
+
5
z
2
−
2
z
+
6
Now,
Subtracting
2
z
3
−
3
z
2
+
z
−
4
from
5
z
3
+
5
z
2
−
2
z
+
6
we get,
5
z
3
+
5
z
2
−
2
z
+
6
−
(
2
z
3
−
3
z
2
+
z
−
4
)
=
5
z
3
+
5
z
2
−
2
z
+
6
−
2
z
3
+
3
z
2
−
z
+
4
=
3
z
3
+
8
z
2
−
3
z
+
10
I
f
x
2
+
2
x
=
45
,
w
h
a
t
i
s
t
h
e
v
a
l
u
e
o
f
x
4
+
4
x
3
+
4
x
2
−
13
?
Report Question
0%
2013
0%
1986
0%
2012
0%
32
Subtract the second expression from the first:
5
x
2
−
6
x
y
+
2
and
3
x
2
+
10
x
y
−
8
.
Report Question
0%
x
2
−
16
x
y
−
10
0%
2
x
2
+
86
x
y
+
10
0%
x
2
−
8
x
y
−
50
0%
2
x
2
−
16
x
y
+
10
Explanation
(
5
x
2
−
6
x
y
+
2
)
−
(
3
x
2
+
10
x
y
−
8
)
=
5
x
2
−
6
x
y
+
2
−
3
x
2
−
10
x
y
+
8
=
2
x
2
−
16
x
y
+
10
Subtract
4
a
−
7
a
b
+
3
b
+
12
from
12
a
−
9
a
b
+
5
b
−
3
.
Report Question
0%
8
a
+
2
a
b
+
2
b
+
15
0%
8
a
+
2
b
+
15
0%
8
a
−
2
a
b
+
2
b
+
15
0%
8
a
−
2
a
b
+
2
b
−
15
Explanation
subtract
4
a
−
7
a
b
+
3
b
+
12
from
12
a
−
9
a
b
+
5
b
−
3
=
12
a
−
9
a
b
+
5
b
−
3
−
(
4
a
−
7
a
b
+
3
b
+
12
)
=
12
a
−
9
a
b
+
5
b
−
3
−
4
a
+
7
a
b
−
3
b
−
12
=
8
a
−
2
a
b
+
2
b
−
15
From
8
−
y
+
2
y
2
take away
(
y
2
−
7
−
2
y
)
.
Report Question
0%
y
2
+
y
+
15
0%
5
y
2
−
1
0%
3
y
−
7
y
2
+
11
0%
None of these
Explanation
Here we have to just subtract
y
2
−
7
−
2
y
from
8
−
y
+
2
y
2
∴
(
8
−
y
+
2
y
2
)
−
(
y
2
−
7
−
2
y
)
=
8
−
y
+
2
y
2
−
y
2
+
7
+
2
y
=
(
8
+
7
)
+
(
−
y
+
2
y
)
+
(
2
y
2
−
y
2
)
=
15
+
y
+
y
2
Hence, required value is
y
2
+
y
+
15
.
What should be subtracted from
2
a
+
6
b
−
5
to get
−
3
a
+
2
b
+
3
?
Report Question
0%
5
+
4
b
−
8
0%
5
a
+
4
b
−
8
0%
5
a
+
4
a
b
−
8
0%
5
a
+
4
b
−
10
Explanation
Let
X
=
−
3
a
+
2
b
+
3
and
Y
=
2
a
+
6
b
−
5
Let
Z
be the required expression
Now,
X
=
Y
−
Z
=>
Z
=
Y
−
X
Thus,
2
a
+
6
b
−
5
−
(
−
3
a
+
2
b
+
3
)
=
2
a
+
6
b
−
5
+
3
a
−
2
b
−
3
=
5
a
+
4
b
−
8
Find the sum of
x
2
−
2
y
2
,
2
x
2
−
4
x
y
+
5
y
2
,
6
y
2
+
11
x
y
−
6
x
2
Report Question
0%
x
2
−
5
x
y
+
2
y
2
0%
5
y
2
+
2
x
y
−
2
x
2
0%
9
y
2
+
7
x
y
−
3
x
2
0%
2
x
2
−
7
x
y
+
y
2
Explanation
Required sum
=
(
x
2
−
2
y
2
)
+
(
2
x
2
−
4
x
y
+
5
y
2
)
+
(
6
y
2
+
11
x
y
−
6
x
2
)
=
(
x
2
+
2
x
2
−
6
x
2
)
+
(
−
2
y
2
+
5
y
2
+
6
y
2
)
+
(
−
4
x
y
+
11
x
y
)
(Combining like terms)
=
−
3
x
2
+
9
y
2
+
7
x
y
.
What should be added to
5
x
2
+
2
x
y
+
y
2
to get
3
x
2
+
4
x
y
?
Report Question
0%
−
2
x
2
+
2
x
y
−
y
2
0%
x
2
+
2
y
−
y
2
0%
−
2
x
2
+
2
y
−
x
y
2
0%
x
2
+
2
x
y
−
y
2
Explanation
Let
A
=
3
x
2
+
4
x
y
and
B
=
5
x
2
+
2
x
y
+
y
2
Let
C
be the required expression
Now,
A
=
B
+
C
=>
C
=
A
−
B
Thus,
3
x
2
+
4
x
y
−
(
5
x
2
+
2
x
y
+
y
2
)
=
3
x
2
+
4
x
y
−
5
x
2
−
2
x
y
−
y
2
=
−
2
x
2
+
2
x
y
−
y
2
Subtract
(
5
x
2
−
5
x
−
7
)
from the sum of
(
x
2
−
3
)
,
(
5
−
4
x
)
and
(
9
+
4
x
2
)
Report Question
0%
x
+
18
0%
x
2
+
x
+
10
0%
−
x
+
24
0%
−
9
x
+
18
Explanation
(
x
2
−
3
)
+
(
5
−
4
x
)
+
(
9
+
4
x
2
)
=
5
x
2
−
4
x
+
11
Now,
(
5
x
2
−
4
x
+
11
)
−
(
5
x
2
−
5
x
−
7
)
=
x
+
18
Option A is correct.
Simplify
(
a
3
−
2
a
2
+
4
a
−
5
)
−
(
−
a
3
−
8
a
+
2
a
2
+
5
)
Report Question
0%
2
a
3
+
7
a
2
+
6
a
−
10
0%
2
a
3
+
7
a
2
+
12
a
−
10
0%
2
a
3
−
4
a
2
+
12
a
−
10
0%
2
a
3
+
4
a
2
+
6
a
−
10
Explanation
3
3
−
2
a
2
+
4
a
−
5
(
−
)
−
a
3
+
2
a
2
−
8
a
+
5
+ - + -
¯
2
a
3
−
4
a
2
+
12
a
−
10
_
Simplify :
5
x
−
[
4
x
−
{
(
2
x
−
5
)
−
3
(
3
x
−
4
)
}
]
Report Question
0%
−
7
−
6
x
0%
−
7
+
6
x
0%
7
+
6
x
0%
7
−
6
x
Explanation
5
x
−
[
4
x
−
{
(
2
x
−
5
)
−
3
(
3
x
−
4
)
}
]
=
5
x
−
4
x
+
[
(
2
x
−
5
)
−
3
(
3
x
−
4
)
]
=
5
x
−
4
x
+
2
x
−
5
−
9
x
+
12
=
7
−
6
x
−
a
−
[
a
+
{
a
+
b
−
2
a
−
(
a
−
2
b
)
}
−
b
]
is equal to
Report Question
0%
−
4
a
+
b
0%
4
a
−
2
b
0%
0
0%
−
2
b
Explanation
Given,
−
a
−
[
a
+
{
a
+
b
−
2
a
−
(
a
−
2
b
)
}
−
b
]
=
−
a
−
[
a
+
{
a
+
b
−
2
a
−
a
+
2
b
}
−
b
]
=
−
a
−
[
a
+
{
−
2
a
+
3
b
}
−
b
]
=
−
a
−
[
a
−
2
a
+
3
b
−
b
]
=
−
a
−
[
−
a
+
2
b
]
=
−
a
+
a
−
2
b
=
−
2
b
, which is simplified form of the given expression.
By how much is
x
4
−
4
x
2
y
2
+
y
4
less than
x
4
+
8
x
2
y
2
+
y
4
?
Report Question
0%
−
12
x
2
y
2
0%
12
x
2
y
2
0%
−
12
x
y
0%
12
x
y
Explanation
We have to find solution of
(
x
4
+
8
x
2
y
2
+
y
4
)
−
(
x
4
−
4
x
2
y
2
+
y
4
)
Separating like terms and unlike terms, we get
=
x
4
−
x
4
+
y
4
−
y
4
+
8
x
2
y
2
−
(
−
4
x
2
y
2
)
=
8
x
2
y
2
+
4
x
2
y
2
=
12
x
2
y
2
Subtract the sum of
(
5
x
2
−
7
x
+
4
)
and
(
2
x
−
5
x
3
+
1
)
from
(
3
x
2
−
1
+
5
x
)
.
Report Question
0%
5
x
3
+
11
x
2
−
5
x
+
3
0%
5
x
3
−
2
x
2
+
10
x
−
6
0%
3
x
3
+
11
x
2
+
3
x
+
5
0%
11
x
3
+
3
x
2
+
5
x
−
3
Explanation
3
x
2
−
1
+
5
x
−
[
(
5
x
2
−
7
x
+
4
)
+
(
2
x
−
5
x
3
+
1
)
]
=
3
x
2
−
1
+
5
x
−
[
5
x
2
−
5
x
+
5
−
5
x
3
]
=
3
x
2
−
1
+
5
x
−
5
x
2
+
5
x
−
5
+
5
x
3
=
−
2
x
2
+
10
x
−
6
+
5
x
3
=
5
x
3
−
2
x
2
+
10
x
−
6
0:0:2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 7 Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page