MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 7 Maths Algebraic Expressions Quiz 6 - MCQExams.com
CBSE
Class 7 Maths
Algebraic Expressions
Quiz 6
What should be taken away from $$3x^2-4y^2+5xy+20$$ to get $$ -x^2-y^2+6xy+20$$.
Report Question
0%
$$x^2-y^2-xy$$
0%
$$x^3-3y^2-xy$$
0%
$$x^2-y^3-xy$$
0%
$$4x^2-3y^2-xy$$
Explanation
Let $$p$$ be the required expression. Then according the question, we have:
$$(3x^{ 2 }−4y^{ 2 }+5xy+20)-p=−x^{ 2 }−y^{ 2 }+6xy+20\\ \Rightarrow p=(3x^{ 2 }−4y^{ 2 }+5xy+20)-(-x^{ 2 }−y^{ 2 }+6xy+20)\\ \Rightarrow p=3x^{ 2 }−4y^{ 2 }+5xy+20+x^{ 2 }+y^{ 2 }-6xy-20\\ \Rightarrow p=(3x^{ 2 }+x^{ 2 })+(−4y^{ 2 }+y^{ 2 })+(5xy-6xy)+(20-20)\quad \quad \quad \quad (Combining\quad like\quad terms)\\ \Rightarrow p=4x^{ 2 }−3y^{ 2 }-xy$$
Hence,
$$(3x^{ 2 }−4y^{ 2 }+5xy+20)-(4x^{ 2 }−3y^{ 2 }-xy)=−x^{ 2 }−y^{ 2 }+6xy+20$$.
Find the like terms from the given terms and add them:
$$4xyz, 2x^2y^2, 3x^2y^2, 4x^2, 9x^2y^2, 18x^2, 6xyz, 10x^2, 7xyz$$
Report Question
0%
(1) 11xyz
(2) $$12x^2y^2$$
(3) $$32x^2$$
0%
(1) 17xyz
(2) $$14x^2y^2$$
(3) $$32x^2$$
0%
(1) -17xyz
(2) $$14x^2y^2$$
(3) $$28x^2$$
0%
none
Explanation
We know that like terms are terms whose variables (and their exponents such as the $$2$$ in $$x^2$$) are the same.
In the given terms $$4xyz,2x^2y^2,3x^2y^2,4x^2,9x^2y^2,18x^2,6xyz,10x^2,7xyz$$, the like terms are as follows:
(i) $$4xyz,6xyz,7xyz$$
(ii) $$2x^2y^2,3x^2y^2,9x^2y^2$$
(iii) $$4x^2,18x^2,10x^2$$
Now, adding the like terms, we get:
(i) $$4xyz+6xyz+7xyz=17xyz$$
(ii) $$2x^2y^2+3x^2y^2+9x^2y^2=14x^2y^2$$
(iii) $$4x^2+18x^2+10x^2=32x^2$$
Hence, after adding the like terms we get $$17xyz, 14x^2y^2,32x^2$$.
State True or False
$$13m^2-2m^2 = 11m^2$$
Report Question
0%
True
0%
False
Explanation
Let us solve the given expression $$13m^2-2m^2$$ by combining like terms as shown below:
$$13m^2-2m^2=(13-2)m^2=11m^2$$
Hence,
$$13m^2-2m^2=11m^2$$
.
Subtract $$4{ p }^{ 2 }q-3pq+5p{ q }^{ 2 }-8p+7q-10$$ from $$18-3p-11q+5pq-2{ q }^{ 2 }+5{ p }^{ 2 }q$$
Report Question
0%
$$28+5p-18q+8pq-2q^2+p^2q-5pq^2$$
0%
$$8+11p-18q+8pq-2q^2+p^2q-5pq^2$$
0%
$$28-5p+18q-8pq+2q^2-p^2q+5pq^2$$
0%
none
Explanation
We subtract the given expression $$4p^2q-3pq+5pq^2-8p+7q-10$$ from $$18-3p-11q+5pq-2q^2+5p^2q$$ as shown below:
$$(18-3p-11q+5pq-2q^{ 2 }+5p^{ 2 }q)-(4p^{ 2 }q-3pq+5pq^{ 2 }-8p+7q-10)\\ =18-3p-11q+5pq-2q^{ 2 }+5p^{ 2 }q-4p^{ 2 }q+3pq-5pq^{ 2 }+8p-7q+10\\ =(18+10)+(-3p+8p)+(-11q-7q)+(5pq+3pq)-2q^{ 2 }+(5p^{ 2 }q-4p^{ 2 }q)-5pq^{ 2 }\\ (Combining\quad like\quad terms)\\ =28+5p-18q+8pq-2q^{ 2 }+p^{ 2 }q-5pq^{ 2 }$$
Hence,
$$(18-3p-11q+5pq-2q^{ 2 }+5p^{ 2 }q)-(4p^{ 2 }q-3pq+5pq^{ 2 }-8p+7q-10)=28+5p-18q+8pq-2q^{ 2 }+p^{ 2 }q-5pq^{ 2 }$$
.
Simplify: $$\left( { x }^{ 2 }-{ y }^{ 2 }+2xy+1 \right) -\left( { x }^{ 2 }-{ y }^{ 2 }+4xy-5 \right) $$
Report Question
0%
$$-2xy+6$$
0%
$$2xy+6$$
0%
$$2x{ y }^{ 2 }-2xy+6$$
0%
$$-2{ y }^{ 2 }-2xy-6$$
Explanation
Given: $$(x^2-y^2+2xy+1)-(x^2-y^2+4xy-5)$$
$$=x^2-y^2+2xy+1-x^2+y^2-4xy+5$$
$$ = x^2-x^2-y^2+y^2+2xy-4xy+1+5$$
$$=-2xy+6$$
$$\therefore$$
$$(x^2-y^2+2xy+1)-(x^2-y^2+4xy-5)=-2xy+6$$
If A = $$10{w}^{3} + 20{w}^{2} - 55w + 60$$,
B = $$-25{w}^{2} + 15w - 10$$ and
C = $$5{w}^{2} - 10w + 20$$,
then A + B - C is equal to ______.
Report Question
0%
$$10{w}^{3} + 10{w}^{2} + 30w + 30$$
0%
$$10{w}^{3} + 10{w}^{2} - 30w + 30$$
0%
$$10{w}^{3} - 10{w}^{2} - 30w + 30$$
0%
None of these
Explanation
So, $$A+B-C=(10W^3+20W^2-55W+60)+(-25W^2+15W-10)-(5W^2-10W+20)$$
Note- Polynomials with same order will be operated with each other.
So, $$A+B-C=10W^3+(20W^2-25W^2-5W^2)+(-55W+15W+10W)+(60-10-20)$$
So, $$A+B-C=10W^3-10W^2-30W+30$$
Simplify :
(3x + 2y - 9) (2x - 6y + 2) - [(4x - 9y - 1)
+ (-3x + 8y + 7)]
Report Question
0%
$$6{x}^{2} - 14xy - 12{y}^{2} - 13x + 59y - 24$$
0%
$$6{x}^{2} - 12xy - 189 - 17x + 61y - 29$$
0%
$$8{x}^{2} - 14xy - 12{y}^{2} - 13x + 57y- 24$$
0%
$$8{x}^{2} - 14xy - 12{y}^{2} - 17x + 61y - 29$$
Explanation
Given expression is $$(3x+2y-9)(2x-6y+2)-[(4x-9y-1)+(-3x+8y+7)]$$
We can perform the given operations to simplify the expression further.
$$=(6x^2-18xy+6x+4xy+4y-12y^2-18x+54y-18)-[4x-9y-1-3x+8y+7]$$
$$\Rightarrow 6x^2-12y^2-14xy-12x+58y-18-x+y-6$$
$$\Rightarrow 6x^2-12y^2-14xy-13x+59y-24$$
Hence, $$(3x+2y-9)(2x-6y+2)-[(4x-9y-1)+(-3x+8y+7)]=6x^2-12y^2-14xy-13x+59y-24$$
By how much is $$a^{4} - 4a^{2}b^{2} + b^{4}$$ more than $$a^{4} - 8a^{2}b^{2} + b^{4}$$?
Report Question
0%
$$4a^{2}b^{2}$$
0%
$$-12a^{2}b^{2}$$
0%
$$2a^{4} + 2b^{4}$$
0%
$$10a^{2}b^{2}$$
Explanation
We have two expressions
$$a^{4}-4a^{2}b^{2}+b^{2}$$ ............(1)
$$a^{4}-8a^{2}b^{2}+b^{2}$$ ............(2)
Subtract (2) from (1), we get
$$a^{4}-4a^{2}b^{2}+b^{2} - (a^{4}-8a^{2}b^{2}+b^{4})$$
$$= a^{4}-4a^{2}b^{2}+b^{2} - a^{4}+8a^{2}b^{2}-b^{4}$$
$$= -4a^{2}+8a^{2}b^{2}$$
$$= 4a^{2}b^{2}$$
What must be subtracted from $$3a^{2} - 6ab - 3b^{2} - 1$$ to get $$4a^{2} - 7ab - 4b^{2} + 1$$?
Report Question
0%
$$a^{2} - ab - b^{2} + 2$$
0%
$$6a^{2} + 2ab + 8b^{2} - 7$$
0%
$$-a^{2} + ab + b^{2} - 2$$
0%
$$3a^{2} - ab + b^{2} - 2$$
Explanation
Let the polynomial to be subtracted be $$s$$. Then,
$$(3a^2-6ab-3b^2-1)-s=(4a^2-7ab-4b^2+1)$$
$$\Rightarrow s = \left( {3{a^2} - 6ab - 3{b^2} - 1} \right) - \left( {4{a^2} - 7ab - 4{b^2} + 1} \right)$$
$$\Rightarrow s = 3{a^2} - 6ab - 3{b^2} - 1 - 4{a^2} + 7ab + 4{b^2} -1 $$
$$\Rightarrow s = \left( {3{a^2} - 4{a^2}} \right) + \left( { - 6ab + 7ab} \right) + \left( { - 3{b^2} + 4{b^2}} \right) + \left( { - 1 - 1} \right)$$
$$\Rightarrow s = - {a^2} + ab - {b^2} - 2$$
Therefore, $$-a^2+ab+b^2-2$$ must be subtracted from $$3a^2-6ab-3b^2-1$$ to get $$4a^2-7ab-4b^2+1.$$
Hence, option $$C$$ is correct.
Add $$5x^2-7x+3, -8x^2+2x-5$$ and $$7x^2-x-2$$
Report Question
0%
$$4x^2-7x+3$$
0%
$$4x^2-6x-4$$
0%
$$4x^2+7x-4$$
0%
$$4x^2-6x-3$$
Explanation
To simplify an algebraic expression that consists of both like and unlike terms, we need to move the like terms together and then add or subtract their coefficients.
Here, the terms are
$$5x^2-7x+3,-8x^2+2x-5$$ and $$7x^2-x-2$$. We add these terms as shown below:
$$(5x^{ 2 }-7x+3)+(-8x^{ 2 }+2x-5)+(7x^{ 2 }-x-2)\\ =\left( 5{ x }^{ 2 }-8{ x }^{ 2 }+7{ x }^{ 2 } \right) +\left( -7x+2x-x \right) +\left( 3-5-2 \right) \\ ={ x }^{ 2 }\left( 5-8+7 \right) +x\left( -7+2-1 \right) +\left( 3-5-2 \right) \\ =4{ x }^{ 2 }-6x-4$$
Hence,
$$(5x^{ 2 }-7x+3)+(-8x^{ 2 }+2x-5)+(7x^{ 2 }-x-2)=4{ x }^{ 2 }-6x-4$$.
Do the following subtractions as directed.
Subtract $$(8p+9k-17)$$ from $$(2pq+7p-8q+15)$$
Report Question
0%
$$-p-8q-9k+2pq+32$$
0%
$$p+8q-9k+2pq+32$$
0%
$$-p-8q+9k+pq+32$$
0%
$$p-8q-9k+2pq-32$$
Explanation
We know that Like terms are terms that contain the same variables raised to the same power.
We group together the like terms and subtract $$8p+9k-17$$ from $$2pq+7p-8q+15$$ as follows:
$$(2pq+7p-8q+15)-(8p+9k-17)\\ =2pq+7p-8q+15-8p-9k+17\\ =(7p-8p)-8q-9k+2pq+(15+17)\\ =-p-8q-9k+2pq+32$$
Hence,
$$(2pq+7p-8q+15)-(8p+9k-17)=-p-8q-9k+2pq+32$$
.
Do the following subtractions as directed.
Subtract $$t^4-3t^2+7$$ from $$5t^3-9$$
Report Question
0%
$$t^4-3t^2-5t^3+16$$
0%
$$-t^4-5t^3-3t^2+16$$
0%
$$-t^4+5t^3+3t^2-16$$
0%
$$t^4-5t^3-3t^2-16$$
Explanation
We know that Like terms are terms that contain the same variables raised to the same power.
The only like term in the given expressions $$t^4-3t^2+7$$ and $$5t^3-9$$ are $$7$$ and $$-9$$.
So we group together the like terms and subtract
$$t^4-3t^2+7$$ from
$$5t^3-9$$
as follows:
$$(5t^{ 3 }-9)-(t^{ 4 }-3t^{ 2 }+7)\\ =5t^{ 3 }-9-t^{ 4 }+3t^{ 2 }-7\\ =-t^{ 4 }+5t^{ 3 }+3t^{ 2 }+(-9-7)\\ =-t^{ 4 }+5t^{ 3 }+3t^{ 2 }-16$$
Hence, $$(5t^{ 3 }-9)-(t^{ 4 }-3t^{ 2 }+7)=-t^{ 4 }+5t^{ 3 }+3t^{ 2 }-16$$.
Do the following subtractions as directed.
Subtract $$(3x^3-7x+4)$$ from $$(5x^3+7x^2-2x)$$
Report Question
0%
$$2x^3+4x^2+5x-2$$
0%
$$2x^3+7x^2+5x-2$$
0%
$$2x^3+7x^2+5x-4$$
0%
$$2x^3+x^2+5x-2$$
Explanation
We know that Like terms are terms that contain the same variables raised to the same power.
We group together the like terms and subtract $$3x^3-7x+4$$ from $$5x^3+7x^2-2x$$ as follows:
$$(5x^{ 3 }+7x^{ 2 }-2x)-(3x^{ 3 }-7x+4)\\ =5x^{ 3 }+7x^{ 2 }-2x-3x^{ 3 }+7x-4\\ =(5x^{ 3 }-3x^{ 3 })+7x^{ 2 }+(-2x+7x)-4\\ =2x^{ 3 }+7x^{ 2 }+5x-4$$
Hence,
$$(5x^{ 3 }+7x^{ 2 }-2x)-(3x^{ 3 }-7x+4)=2x^{ 3 }+7x^{ 2 }+5x-4$$
.
Add the following :
i) $$5y^3 , 26y^3, 10y^3, -3y^3$$
ii) $$3x^2, -10x^2, 4x^2$$
iii) $$4x^2y, -3xy^2, -5xy^2, 5x^2y$$
Report Question
0%
(i) $$38y^3$$ (ii) $$-3x^2$$ (iii) $$8x^2y-9xy^2$$
0%
(i) $$38y^3$$ (ii) $$-3x^2$$ (iii) $$9x^2y-8xy^2$$
0%
(i) $$41y^3$$ (ii) $$-3x^2$$ (iii) $$9x^2y-8xy^2$$
0%
None
Explanation
i)
$$5y^3,26y^3,10y^3,−3y^3 $$
$$5y^3+26y^3+10y^3−3y^3 $$
$$y^3(5+26+10-3)$$
$$38y^3$$
ii)
$$3x^2,−10x^2,4x^2$$
$$3x^2−10x^2+4x^2$$
$$x^2(3-10+4)$$
$$-3x^2$$
iii)
$$4x^2y,−3xy^2,−5xy^2,5x^2y$$
$$4x^2y−3xy^2−5xy^2+5x^2y$$
$$4x^2y+5x^2y−3xy^2−5xy^2$$
$$9x^2y−8xy^2$$
Subtract $$2x^{3}-4x^{2}+3x+5$$ from $$4x^{2}+x^{2}+x+6$$, then the resultant value is
Report Question
0%
$$6x^{3}+5x^{2}-2x+1$$
0%
$$2x^{3}+5x^{2}-2x+1$$
0%
$$2x^{3}-5x^{2}-2x+1$$
0%
$$2x^{3}-5x^{2}+2x-1$$
What must be added to $$5x^{3}-2x^{2}+6x+7$$ to make the sum $$x^{3}+3x^{2}-x+1$$?
Report Question
0%
$$4x^{3}-5x^{2}+7x+6$$
0%
$$4x^{3}+5x^{2}-7x+6$$
0%
$$-4x^{3}+5x^{2}-7x-6$$
0%
$$None\ of\ these$$
Explanation
$$\left( {x}^{3} + 3 {x}^{2} - x + 1 \right) - \left( 5 {x}^{3} - 2 {x}^{2} + 6x + 7 \right)$$
$$= \left( 1 - 5 \right) {x}^{3} + \left( 3 + 2 \right) {x}^{2} - \left( 1 + 6 \right) x + 1 - 7$$
$$= -4 {x}^{3} + 5 {x}^{2} - 7x - 6$$
Hence $$\left( -4 {x}^{3} + 5 {x}^{2} - 7x - 6 \right)$$ must be added to $$\left( {x}^{3} + 3 {x}^{2} - x + 1 \right)$$ to make the sum $$\left( 5 {x}^{3} - 2 {x}^{2} + 6x + 7 \right)$$.
Simplify combining like terms :
$$p-(p-q)-q-(q-p)$$
Report Question
0%
$$q-p$$
0%
$$q$$
0%
$$0$$
0%
$$p-q$$
Explanation
$$p-(p-q)-q-(q-p)$$
$$=p-p+q-q-q+p$$
$$=p-q$$
Add: $$2u+3v,\,\,-2v+3w,\,\,3u-v+2w$$
Report Question
0%
$$5u-5w$$
0%
$$5u+5w$$
0%
$$u-w$$
0%
$$u+w$$
Explanation
given, $$\left(2u+3v+3u-v+2w\right)+\left(-2v+3w\right)$$
$$=5u+2v+2w-2v+3w$$
$$=5u+5w$$
What must be added to $${ 7z }^{ 3 }-{ 11z }^{ 2 }-129$$ to get $${ 5z }^{ 2 }+7z-92$$ ?
Report Question
0%
$${ 7z }^{ 3 }+{ 16z }^{ 2 }+7z+37$$
0%
$$-{ 7z }^{ 3 }+{ 16z }^{ 2 }+7z+37$$
0%
$$-{ 7z }^{ 3 }+{ 16z }^{ 2 }+7z-37$$
0%
$$-{ 7z }^{ 3 }-{ 7z }^{ 2 }+7z-37$$
Explanation
Let a must be added.
Then,
$$7z^3 - 11z^2 -129 + a = 5z^2 +7z -92$$
$$\rightarrow a = -7z^3 + 16z^2 + 7z + 37$$
Thus, B is the correct answer.
Simplify: $$a-[b-\{c-(a-b-c)\}-c]+a$$
Report Question
0%
$$a-2c$$
0%
$$a-3c$$
0%
$$a+3c$$
0%
$$a+2c$$
The sum of $$(6a+4b-c+3), (2b-3c+4), (11b-7a+2c-1)$$ and $$(2c-5a-6)$$ is
Report Question
0%
$$(4a-6b+2)$$
0%
$$(-3a+14b-3c+2)$$
0%
$$(-6a+17b)$$
0%
$$(-6a+6b+c-4)$$
Explanation
$$(6a+4b−c+3)+(2b−3c+4)+(11b−7a+2c−1)+(2c−5a−6)$$
$$\Rightarrow$$
$$6a+4b−c+3+2b−3c+4+11b−7a+2c−1+2c−5a−6$$
Now arranging and combining the like terms,
$$\Rightarrow$$ $$(6a-7a-5a)+(4b+2b+11b)+(-c-3c+2c+2c)+(3+4-1-6)$$
$$\Rightarrow$$ $$-6a+17b$$
$$\therefore$$
The sum of $$(6a+4b−c+3),(2b−3c+4),(11b−7a+2c−1)$$ and $$(2c−5a−6)$$ is $$(-6a+17b)$$
The length of a side of square is given as $$2x+3$$. Which expression represents the perimeter of the square.
Report Question
0%
$$2x+16$$
0%
$$6x+9$$
0%
$$8x+3$$
0%
$$8x+12$$
Explanation
Apply the formula of perimeter of square
Since, the perimeter of a square $$=side+side+side+side=4 \times side$$
The perimeter of the given square $$=4 \times (2x+3)$$
$$=4 \times 2 x+4 \times 3$$
$$\Rightarrow 4 \times(2 x+3)=8 x+12$$
Therefore, the perimeter of the given square $$=8x+12$$
$$\textbf{Hence, the correct option is (d)}$$
Number of terms in the expression $$3{ x }^{ 2 }{ y }-2{ y }^{ 2 }{ z }-{ z }^{ 2 }x+5$$ is
Report Question
0%
$$2$$
0%
$$3$$
0%
$$4$$
0%
$$5$$
Explanation
The terms in the given expression are $$3 x^{2} y,-2 y^{2} z,-z^{2} x$$ and $$5$$
Therefore, the number of terms in the given expression are $$4 .$$
$$\textbf{Hence, the correct option is (c)}$$
The terms of the expression $$4{ x }^{ 2 }-3xy$$ are:
Report Question
0%
$$4{ x }^{ 2 }$$ and $$-3xy$$
0%
$$4{ x }^{ 2 }$$ and $$3xy$$
0%
$$4{ x }^{ 2 }$$ and $$-xy$$
0%
$${ x }^{ 2 }$$ and $$xy$$
Explanation
We know that terms are added in an expression.
Therefore terms in the expression $$4 x^{2}-3 x y$$ are $$4 x^{2}$$ and $$-3 x y$$
$$\textbf{Hence, the correct option is (a)}$$
State true or false.
$$(3a-b+3)-(a+b)$$ is a binomial.
Report Question
0%
True
0%
False
State true or false: $$7x$$ has two terms, $$7$$ and $$x$$
Report Question
0%
True
0%
False
Explanation
$$7x$$ is a multiplication of $$7$$ and $$x$$.
Since, $$7x$$ contains no addition and subtraction operations and therefore it has only one term
State the following statement is true or false.
Sum of $$x^2+x$$ and $$y^2+y$$ is $$2x^2+2y^2$$
Report Question
0%
True
0%
False
Explanation
$$x^2+x+y^2+y=x^2+y^2++y$$
Hence, s
um of $$x^2+x$$ and $$y^2+y$$ is not $$2x^2+2y^2$$
State the following statement is true or false.
If we subtract a monomial from a binomial, then the answer is at least a binomial.
Report Question
0%
True
0%
False
Explanation
Ans :- False
It can be a monomial
For example: 6x + (4 - 6x) = 4 which is monomial.
If the perimeter of rectangle is given by $$2(a+b)$$, where $$a$$ and $$b$$ denotes the length and breadth of the rectangle respectively.. The variable used here are ____ and ____.
Report Question
0%
$$2$$ and $$a$$
0%
$$2$$ and $$b$$
0%
$$a $$ and $$b$$
0%
$$2, a$$ and $$b$$
If $$a$$ represent the side of a square, then perimeter of the square is ____.
Report Question
0%
$$2a$$
0%
$$4a$$
0%
$$6a$$
0%
$$8a$$
Explanation
Given side of square: $$a$$ units
We know $$\textit{Perimeter of square} = 4 \times side$$
$$\therefore$$ the required expression here is $$4a$$
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
0
Not Answered
0
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 7 Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page