CBSE Questions for Class 7 Maths Algebraic Expressions Quiz 6 - MCQExams.com

What should be taken away from $$3x^2-4y^2+5xy+20$$ to get $$ -x^2-y^2+6xy+20$$.
  • $$x^2-y^2-xy$$
  • $$x^3-3y^2-xy$$
  • $$x^2-y^3-xy$$
  • $$4x^2-3y^2-xy$$
Find the like terms from the given terms and add them:
$$4xyz, 2x^2y^2, 3x^2y^2, 4x^2, 9x^2y^2, 18x^2, 6xyz, 10x^2, 7xyz$$
  • (1) 11xyz
    (2) $$12x^2y^2$$
    (3) $$32x^2$$
  • (1) 17xyz
    (2) $$14x^2y^2$$
    (3) $$32x^2$$
  • (1) -17xyz
    (2) $$14x^2y^2$$
    (3) $$28x^2$$
  • none
State True or False
 $$13m^2-2m^2 = 11m^2$$
  • True
  • False
Subtract $$4{ p }^{ 2 }q-3pq+5p{ q }^{ 2 }-8p+7q-10$$ from $$18-3p-11q+5pq-2{ q }^{ 2 }+5{ p }^{ 2 }q$$
  • $$28+5p-18q+8pq-2q^2+p^2q-5pq^2$$
  • $$8+11p-18q+8pq-2q^2+p^2q-5pq^2$$
  • $$28-5p+18q-8pq+2q^2-p^2q+5pq^2$$
  • none
Simplify: $$\left( { x }^{ 2 }-{ y }^{ 2 }+2xy+1 \right) -\left( { x }^{ 2 }-{ y }^{ 2 }+4xy-5 \right) $$
  • $$-2xy+6$$
  • $$2xy+6$$
  • $$2x{ y }^{ 2 }-2xy+6$$
  • $$-2{ y }^{ 2 }-2xy-6$$
If A = $$10{w}^{3} + 20{w}^{2} - 55w + 60$$,
B = $$-25{w}^{2} + 15w - 10$$ and
C = $$5{w}^{2} - 10w + 20$$,
then A + B - C is equal to ______.
  • $$10{w}^{3} + 10{w}^{2} + 30w + 30$$
  • $$10{w}^{3} + 10{w}^{2} - 30w + 30$$
  • $$10{w}^{3} - 10{w}^{2} - 30w + 30$$
  • None of these
Simplify :
(3x + 2y - 9) (2x - 6y + 2) - [(4x - 9y - 1) + (-3x + 8y + 7)]
  • $$6{x}^{2} - 14xy - 12{y}^{2} - 13x + 59y - 24$$
  • $$6{x}^{2} - 12xy - 189 - 17x + 61y - 29$$
  • $$8{x}^{2} - 14xy - 12{y}^{2} - 13x + 57y- 24$$
  • $$8{x}^{2} - 14xy - 12{y}^{2} - 17x + 61y - 29$$
By how much is $$a^{4} - 4a^{2}b^{2} + b^{4}$$ more than $$a^{4} - 8a^{2}b^{2} + b^{4}$$?
  • $$4a^{2}b^{2}$$
  • $$-12a^{2}b^{2}$$
  • $$2a^{4} + 2b^{4}$$
  • $$10a^{2}b^{2}$$
What must be subtracted from $$3a^{2} - 6ab - 3b^{2} - 1$$ to get $$4a^{2} - 7ab - 4b^{2} + 1$$?
  • $$a^{2} - ab - b^{2} + 2$$
  • $$6a^{2} + 2ab + 8b^{2} - 7$$
  • $$-a^{2} + ab + b^{2} - 2$$
  • $$3a^{2} - ab + b^{2} - 2$$
Add $$5x^2-7x+3, -8x^2+2x-5$$ and $$7x^2-x-2$$
  •  $$4x^2-7x+3$$
  •  $$4x^2-6x-4$$
  •  $$4x^2+7x-4$$
  •  $$4x^2-6x-3$$
Do the following subtractions as directed.
Subtract $$(8p+9k-17)$$ from $$(2pq+7p-8q+15)$$
  • $$-p-8q-9k+2pq+32$$
  • $$p+8q-9k+2pq+32$$
  • $$-p-8q+9k+pq+32$$
  • $$p-8q-9k+2pq-32$$
Do the following subtractions as directed.
Subtract $$t^4-3t^2+7$$ from $$5t^3-9$$
  • $$t^4-3t^2-5t^3+16$$
  • $$-t^4-5t^3-3t^2+16$$
  • $$-t^4+5t^3+3t^2-16$$
  • $$t^4-5t^3-3t^2-16$$
Do the following subtractions as directed.
Subtract $$(3x^3-7x+4)$$ from $$(5x^3+7x^2-2x)$$
  • $$2x^3+4x^2+5x-2$$
  • $$2x^3+7x^2+5x-2$$
  • $$2x^3+7x^2+5x-4$$
  • $$2x^3+x^2+5x-2$$
Add the following : 
i) $$5y^3 , 26y^3, 10y^3, -3y^3$$
ii) $$3x^2, -10x^2, 4x^2$$
iii) $$4x^2y, -3xy^2, -5xy^2, 5x^2y$$
  • (i) $$38y^3$$ (ii) $$-3x^2$$ (iii) $$8x^2y-9xy^2$$
  • (i) $$38y^3$$ (ii) $$-3x^2$$ (iii) $$9x^2y-8xy^2$$
  • (i) $$41y^3$$ (ii) $$-3x^2$$ (iii) $$9x^2y-8xy^2$$
  • None
Subtract $$2x^{3}-4x^{2}+3x+5$$ from $$4x^{2}+x^{2}+x+6$$, then the resultant value is 
  • $$6x^{3}+5x^{2}-2x+1$$
  • $$2x^{3}+5x^{2}-2x+1$$
  • $$2x^{3}-5x^{2}-2x+1$$
  • $$2x^{3}-5x^{2}+2x-1$$
What must be added to $$5x^{3}-2x^{2}+6x+7$$ to make the sum $$x^{3}+3x^{2}-x+1$$?
  • $$4x^{3}-5x^{2}+7x+6$$
  • $$4x^{3}+5x^{2}-7x+6$$
  • $$-4x^{3}+5x^{2}-7x-6$$
  • $$None\ of\ these$$
Simplify combining like terms :
$$p-(p-q)-q-(q-p)$$
  • $$q-p$$
  • $$q$$
  • $$0$$
  • $$p-q$$
Add: $$2u+3v,\,\,-2v+3w,\,\,3u-v+2w$$
  • $$5u-5w$$
  • $$5u+5w$$
  • $$u-w$$
  • $$u+w$$
What must be added to $${ 7z }^{ 3 }-{ 11z }^{ 2 }-129$$ to get $${ 5z }^{ 2 }+7z-92$$ ?
  • $${ 7z }^{ 3 }+{ 16z }^{ 2 }+7z+37$$
  • $$-{ 7z }^{ 3 }+{ 16z }^{ 2 }+7z+37$$
  • $$-{ 7z }^{ 3 }+{ 16z }^{ 2 }+7z-37$$
  • $$-{ 7z }^{ 3 }-{ 7z }^{ 2 }+7z-37$$
Simplify: $$a-[b-\{c-(a-b-c)\}-c]+a$$
  • $$a-2c$$
  • $$a-3c$$
  • $$a+3c$$
  • $$a+2c$$
The sum of $$(6a+4b-c+3), (2b-3c+4), (11b-7a+2c-1)$$ and $$(2c-5a-6)$$ is
  • $$(4a-6b+2)$$
  • $$(-3a+14b-3c+2)$$
  • $$(-6a+17b)$$
  • $$(-6a+6b+c-4)$$
The length of a side of square is given as $$2x+3$$. Which expression represents the perimeter of the square.
  • $$2x+16$$
  • $$6x+9$$
  • $$8x+3$$
  • $$8x+12$$
Number of terms in the expression $$3{ x }^{ 2 }{ y }-2{ y }^{ 2 }{ z }-{ z }^{ 2 }x+5$$ is
  • $$2$$
  • $$3$$
  • $$4$$
  • $$5$$
The terms of the expression $$4{ x }^{ 2 }-3xy$$ are:
  • $$4{ x }^{ 2 }$$ and $$-3xy$$
  • $$4{ x }^{ 2 }$$ and $$3xy$$
  • $$4{ x }^{ 2 }$$ and $$-xy$$
  • $${ x }^{ 2 }$$ and $$xy$$
State true or false.
$$(3a-b+3)-(a+b)$$ is a binomial.
  • True
  • False
State true or false: $$7x$$ has two terms, $$7$$ and $$x$$
  • True
  • False
State the following statement is true or false.
Sum of $$x^2+x$$ and $$y^2+y$$ is $$2x^2+2y^2$$
  • True
  • False
State the following statement is true or false.
If we subtract a monomial from a binomial, then the answer is at least a binomial.
  • True
  • False
If the perimeter of rectangle is given by $$2(a+b)$$, where $$a$$ and $$b$$ denotes the length and breadth of the rectangle respectively.. The variable used here are ____ and ____.
  • $$2$$ and $$a$$
  • $$2$$ and $$b$$
  • $$a $$ and $$b$$
  • $$2, a$$ and $$b$$
If $$a$$ represent the side of a square, then perimeter of the square is ____.
  • $$2a$$
  • $$4a$$
  • $$6a$$
  • $$8a$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 7 Maths Quiz Questions and Answers