Explanation
Let total cost of all goods be Rs. $$100$$. He sold $$\dfrac{1}{3}$$ of his goods that is Rs. $$33.3$$ at a profit of $$14\%$$ Then profit $$ = 33.3 \times \dfrac{14}{100} =$$ Rs. $$4.662$$ Simillarly $$\dfrac{3}{5} = 60$$, Profit $$17.5\%$$ Then profit $$ = 60 \times \dfrac{17.5}{100} = 0.60 \times 17.5 = 10.5$$ Now $$ 100 - (33.3+60) = 100 - 93.3 =$$ Rs. $$6.7$$ Profit on Rs. $$6.7 = \dfrac{6.7 \times 20}{100} = 1.34$$ Total profit $$ = 4.662+10.5+1.34=$$ Rs. $$ 16.502 = 16.5\%$$
Let the C.P. for Sanjay be Rs. $$x$$ Then, S.P. for Sanjay $$= x + 46\%$$ of $$x$$ $$=x+\dfrac {46}{100}x=\dfrac {146x}{100}$$ $$\therefore$$ C.P. of Salman $$=\dfrac {146x}{100}+40$$ $$\because$$ Salman made neither profit nor loss. $$\dfrac {146x}{100}+40=1500$$ $$\Rightarrow \dfrac {146x}{100}=1460$$
$$\Rightarrow x=\dfrac {1460\times 100}{146}=$$ Rs. $$1000$$.
Let the C.P. of a goat be Rs. $$x$$
Then, C.P. of the other goat $$=$$ Rs. $$(1008 - x)$$ $$\because$$ S.P. of the both the goats is the same, Therefore, $$x\times \dfrac {(100-20)}{100}=(1008-x)\times \dfrac {144}{100}$$ $$\Rightarrow 80x=1008\times 144-144x$$ $$\Rightarrow 224x=1008\times 144$$ $$\Rightarrow x=$$ Rs. $$ \dfrac {1008\times 144}{224}=$$ Rs. $$648$$
C.P. $$=$$ Rs. $$950 - 10\%$$ of Rs. $$950 $$
$$ \Rightarrow 950-\dfrac{10}{100}\times 950$$
$$\Rightarrow 950-95=$$ Rs. $$ 855$$ Repairs cost $$=$$ Rs. $$ 45$$ $$\therefore$$ Net C.P. $$=$$ Rs. $$855+$$ Rs. $$45=$$ Rs. $$900, \text{Profit}=25\%$$
S.P. $$=\dfrac{100+\text{profit}\%}{100}\times \text{C.P.}$$
$$\therefore$$ S.P. $$=$$ Rs. $$\left (\dfrac {900\times 125}{100}\right )=$$ Rs. $$1125$$
Let the C.P. of the article be Rs. $$x$$
Then, S.P. of the article at a loss of $$20\%$$ $$=\dfrac {80}{100}\times x=$$ Rs. $$ \dfrac {80x}{100}$$ S.P. of the article at a profit of $$5\%$$ $$=\dfrac {105}{100}\times x=$$ Rs. $$ \dfrac {105x}{100}$$ According to the question, we have $$\dfrac {80x}{100}+100=\dfrac {105x}{100}$$
$$\Rightarrow \dfrac {105x}{100}-\dfrac {80x}{100}=100$$ $$\Rightarrow x=\dfrac {100\times 100}{25}=$$ Rs. $$400$$
S.P. of each article $$=$$ Rs. $$ \left (\dfrac {37.40}{2}\right )=$$ Rs. $$ 18.70$$ Discount rate $$=15\%$$ $$\therefore$$ M.P. of each article $$=$$ Rs. $$ \dfrac {18.70\times 100}{(100-15)}=$$ Rs. $$ \dfrac {1870}{85}=$$ Rs. $$ 22$$.
Let the C.P. of the item be Rs. $$100$$ Then, M.P. $$=$$ Rs. $$140$$, Discount $$= 25\%$$ $$\therefore$$ S.P. $$=$$ Rs. $$ 140 - 25\%$$ of Rs. $$140$$ $$=$$ Rs. $$ 140-\dfrac {25}{100}\times$$ Rs. $$ 140$$
$$=140-35=$$ Rs. $$ 105$$ $$\therefore$$ Profit $$=$$ Rs. $$ 105-$$ Rs. $$ 100=$$ Rs. $$5$$ Profit $$\%$$ $$=\dfrac {5}{100}\times 100=5\%$$.
S.P. $$=$$ Rs. $$444$$, Discount $$= 26\%$$ Let M.P. $$=$$ Rs. $$ x$$
Then, M.P. $$-$$ discount $$=$$ S.P,
$$x - 26\% $$ of $$ x = 444$$ $$\Rightarrow x-\dfrac{13x}{50} = 444$$ $$\Rightarrow \dfrac{37x}{50}=444$$
$$\Rightarrow x=\dfrac{444\times 50}{37}=$$ Rs. $$ 600$$
Let the C.P. of the transistor be Rs. $$x$$Profit $$=30\%$$ of Rs. $$x$$ $$=$$ Rs. $$\dfrac {3x}{10}$$S.P. $$=$$ Rs. $$ 572$$
C.P. $$+$$ Profit $$=$$ S.P. Therefore, $$ x+\dfrac {3x}{10}=572$$
$$\Rightarrow \dfrac {13x}{10}=572$$ $$\Rightarrow x=$$ Rs. $$ \dfrac {572\times 10}{13}=$$ Rs. $$ 440$$
Given, C.P. $$=$$ Rs. $$ 380$$, Profit $$= 25\%$$ $$\therefore$$ S.P. $$=$$ Rs. $$ \left (\dfrac {380\times 125}{100}\right )=$$ Rs. $$ 475$$ Discount $$=$$ $$5\%$$ $$\therefore$$ M.P. $$=$$ Rs. $$ \left (\dfrac {475\times 100}{95}\right )=$$ Rs. $$ 500$$
Let the M.P. of the cupboard be Rs $$x$$.
Then, $$(100-12.5)\%$$ of $$(100-7.5)\%$$ of Rs. $$x=2590$$
$$\Rightarrow \dfrac {87.5}{100}\times \dfrac {92.5}{100}\times x=2590$$ $$\Rightarrow x=\dfrac {2590\times 100\times 100}{87.5\times 92.5}=$$ Rs. $$3200$$
Given, Cost price of an article, $$CP=$$ Rs $$180$$ Profit or gain = $$20$$ % Discount on the marked price of an article $$=10$$% Marked price of an article, $$MP=?$$ Let the marked priice of an article be $$x$$. Discount on the marked price on an article $$=x-0.10 x$$ $$=0.9 x$$ $$\therefore$$ Selling Price of an article is, $$SP=0.9x$$ We know that, $$\dfrac{SP-CP}{CP}=Gain$$% Put $$SP=0.9x$$, $$CP=180$$, and $$Gain=20$$ % $$\dfrac{0.9x-180}{180}=20$$% $$\dfrac{0.9x-180}{180}=\dfrac{20}{100}$$ $$\dfrac{0.9x-180}{180}=\dfrac{1}{5}$$ $$\dfrac{0.9x-180}{36}=1$$ $$0.9x=36+180$$ $$0.9x=216$$ $$x=\dfrac{216}{0.9}$$ $$x=240$$ $$\therefore$$ Marked Price of an article is Rs 240.
Let the C.P. of the goods $$=Rs 100$$. Then, Marked price of the goods $$= Rs 140$$ Discount $$=$$ 20% $$\therefore$$ S.P. of the goods $$=$$ 80% of $$Rs 140=Rs 112$$ $$\therefore$$ Profit % $$=\dfrac {(112-100)}{100}\times 100=12$$%
Let M.P. $$=$$ Rs. $$100$$
Then S.P. $$=\dfrac{2}{5} $$ of M.P. $$=\dfrac{2}{5}\times 100=$$ Rs. $$40$$
Loss $$=25\%$$
Then, C.P. $$=\dfrac{100}{100- \text{loss} \%}\times$$ S.P.
$$\Rightarrow \dfrac{100}{100-25}\times 40$$
$$\Rightarrow \dfrac{100}{75}\times 40=$$ Rs. $$\dfrac{160}{3}$$
M.P. : C.P. $$=100:\dfrac{160}{3}=300 : 160$$
$$=15:8$$
M.P. $$=$$ Rs. $$2,72,000$$. Discount $$=$$ Rs. $$[(4\%$$ of $$2,00,000)+ (2.5\%$$ of $$72,000)]$$
$$=\left [\left (\dfrac{4}{100}\times 200000)+(\dfrac{2.5}{100}\times 72000\right)\right]$$ $$= $$ Rs. $$(8,000 + 1,800)$$ $$=$$ Rs. $$9,800. $$ Therefor, actual price $$=$$ Rs. $$(2,72,000 - 9,800)$$$$=$$ Rs. $$2,62,200.$$
Let the C.P is =Rs. x
When S.P is Rs.340 then gain %$$=\dfrac{340-x}{x}\times 100$$
When S.P is rs.350 then gain %$$=\dfrac{350-x}{x}\times 100$$
According to the question
$$\Rightarrow \left[\dfrac{350-x}{x}\times 100 \right]-\left[\dfrac{340-x}{x}\times 100 \right]=5$$
$$\Rightarrow \dfrac{100}{x}[350-x-340+x]=5$$
$$\Rightarrow \dfrac{100}{x}[10]=5$$
$$\Rightarrow x=\dfrac{1000}{5}=200$$
Hence C.P of article is Rs.200.
let the M.P $$=$$ Rs. $$x$$
Then $$S.P=x-10\%$$ of $$x$$
$$\Rightarrow x-\dfrac{10x}{100}$$
$$\Rightarrow x-\dfrac{x}{10}$$
$$\Rightarrow \dfrac{9x}{10}$$Then $$\dfrac{9x}{10}=9$$
$$\Rightarrow 9x=10\times 9$$
$$\Rightarrow x=10$$
Let C.P. be Rs $$x$$
Then $$ (1060 - x ) = \dfrac{120}{100} \times (x-950)$$ $$\Rightarrow 10600 - 10x = 120x- 120 \times 950$$ $$\Rightarrow 220x = 220000$$ $$ \Rightarrow x = 1000$$ $$\therefore$$ Desired S.P. $$=$$ Rs. $$\left (\dfrac{120}{100} \times 1000\right) =$$ Rs. $$1200$$
Please disable the adBlock and continue. Thank you.