Explanation
Given \triangle ABC \cong \triangle MBC.
Then the corresponding parts will also be equal.
That is by CPCT rule, corresponding parts of congruent triangles are equal.
Then, AB=MB, BC=BC, AC=MC, \angle A=\angle M, \angle B=\angle B and \angle C=\angle C.
Thus, AB=MB \implies BA=BM.
Hence, option A is correct.
Given \triangle ABC \cong \triangle XYZ.
Then, AB=XY, BC=YZ, AC=XZ, \angle A=\angle X, \angle B=\angle Y and \angle C=\angle Z.
Thus, AC=XZ.
Hence, option C is correct.
Given \triangle BCA \cong \triangle BCD.
Then, BC=BC, CA=CD, BA=BD, \angle B=\angle B, \angle C=\angle C and \angle A=\angle D.
Thus, \angle A=\angle D.
Given \triangle ABC \cong \triangle DEF.
Then, AB=DE, BC=EF, AC=DF, \angle A=\angle D, \angle B=\angle E and \angle C=\angle F.
Thus, BC=EF.
Then, AB=DE,
BC=EF,
AC=DF,
\angle A=\angle D,
\angle B=\angle E
\angle C=\angle F.
Thus, AB=DE.
Hence, option B is correct.
Thus, \angle C=\angle F.
Please disable the adBlock and continue. Thank you.