CBSE Questions for Class 8 Maths Rational Numbers Quiz 6 - MCQExams.com

 Rational numbers between $$\displaystyle \frac{3}{8}$$ and $$\displaystyle \frac{7}{12}$$ are
  • $$\displaystyle \frac{3}{8}, \frac{41}{96}, \frac{23}{48}, \frac{7}{12}$$
  • $$\displaystyle \frac{3}{8}, \frac{41}{196}, \frac{23}{48}, \frac{7}{12}$$
  • $$\displaystyle \frac{3}{8}, \frac{41}{96}, \frac{23}{148}, \frac{7}{12}$$
  • none of the above
Addition of rational numbers does not satisfy which of the following property?
  • Commutative
  • Associative
  • Closure
  • None
 ________ are rational numbers between $$\displaystyle -\dfrac{3}{4}$$ and $$\displaystyle \dfrac{1}{2}.$$
  • $$\dfrac{-7}{16}, \dfrac{-1}{8}, \dfrac{9}{16}$$
  • $$\dfrac{-15}{16}, \dfrac{-1}{8}, \dfrac{3}{16}$$
  • $$\dfrac{-7}{16}, \dfrac{-1}{8}, \dfrac{3}{16}$$
  • none of the above
State TRUE or FALSE
The three rational number between $$\dfrac{1}{3}$$ and $$\dfrac{1}{2}$$ are $$\displaystyle\frac{9}{24},\frac{10}{24},\frac{11}{24}$$.
  • True
  • False
State True or False.
The five rational numbers between $$\dfrac{3}{5}$$ and $$\dfrac{4}{5}$$ are $$ \displaystyle \frac{19}{30},\frac{20}{30},\frac{21}{30},\frac{22}{30},\frac{23}{30}$$.
  • True
  • False
________ are rational numbers between $$\displaystyle \frac{1}{3}$$ and $$\displaystyle \frac{1}{4}$$

  • $$\displaystyle \frac{1}{3}, \frac{7}{64}, \frac{13}{48}, \frac{1}{4}$$
  • $$\displaystyle \frac{1}{3}, \frac{7}{24}, \frac{13}{48}, \frac{1}{4}$$
  • $$\displaystyle \frac{1}{3}, \frac{7}{24}, \frac{13}{68}, \frac{1}{4}$$
  • none of the above
Write the multiplicative inverse of each of the following rational numbers:
$$7$$; $$-11$$; $$\displaystyle\frac{2}{5}$$; $$\displaystyle\frac{-7}{15}$$
  • $$\displaystyle\frac{-1}{7};\;\displaystyle\frac{1}{-11};\;\displaystyle\frac{5}{2};\;\displaystyle\frac{15}{-7}$$
  • $$\displaystyle\frac{1}{7};\;\displaystyle\frac{1}{-11};\;\displaystyle\frac{5}{2};\;\displaystyle\frac{15}{-7}$$
  • $$\displaystyle\frac{1}{7};\;\displaystyle\frac{1}{11};\;\displaystyle\frac{5}{2};\;\displaystyle\frac{15}{-7}$$
  • $$\displaystyle\frac{1}{7};\;\displaystyle\frac{1}{-11};\;\displaystyle\frac{-5}{2};\;\displaystyle\frac{15}{-7}$$
If A : Rational numbers are always closed under division and
R : Division by Zero is not defined, then which of the following statement is correct?
  • A is True and R is the correct explanation of A
  • A is False and R is the correct explanation of A
  • A is True and R is False
  • None of these
Find five rational numbers between $$\displaystyle\frac{-3}{2}$$ and $$\displaystyle\frac{5}{3}$$.
  • $$\displaystyle\frac{-8}{6},\,\displaystyle\frac{-13}{6},\,\displaystyle\frac{0}{6},\,\displaystyle\frac{1}{6}$$ and $$\displaystyle\frac{2}{6}$$
  • $$\displaystyle\frac{-8}{6},\,\displaystyle\frac{-7}{6},\,\displaystyle\frac{0}{6},\,\displaystyle\frac{1}{6}$$ and $$\displaystyle\frac{13}{6}$$
  • $$\displaystyle\frac{-8}{6},\,\displaystyle\frac{-7}{6},\,\displaystyle\frac{0}{6},\,\displaystyle\frac{1}{6}$$ and $$\displaystyle\frac{11}{6}$$
  • $$\displaystyle\frac{-8}{6},\,\displaystyle\frac{-7}{6},\,\displaystyle\frac{0}{6},\,\displaystyle\frac{1}{6}$$ and $$\displaystyle\frac{2}{6}$$
Write any $$10$$ rational numbers between $$0\;and\;2$$.
  • $$\displaystyle\frac{1}{10},\,\displaystyle\frac{2}{10},\,\displaystyle\frac{3}{10},\,\displaystyle\frac{4}{10},\,\displaystyle\frac{5}{10},\,\displaystyle\frac{6}{10},\,\displaystyle\frac{7}{10},\,\displaystyle\frac{88}{10},\,\displaystyle\frac{9}{10},\,\displaystyle\frac{10}{10}$$
  • $$\displaystyle\frac{1}{10},\,\displaystyle\frac{2}{10},\,\displaystyle\frac{3}{10},\,\displaystyle\frac{4}{10},\,\displaystyle\frac{21}{10},\,\displaystyle\frac{6}{10},\,\displaystyle\frac{7}{10},\,\displaystyle\frac{8}{10},\,\displaystyle\frac{9}{10},\,\displaystyle\frac{10}{10}$$
  • $$\displaystyle\frac{1}{10},\,\displaystyle\frac{2}{10},\,\displaystyle\frac{3}{10},\,\displaystyle\frac{4}{10},\,\displaystyle\frac{35}{10},\,\displaystyle\frac{6}{10},\,\displaystyle\frac{7}{10},\,\displaystyle\frac{8}{10},\,\displaystyle\frac{9}{10},\,\displaystyle\frac{10}{10}$$
  • $$\displaystyle\frac{1}{10},\,\displaystyle\frac{2}{10},\,\displaystyle\frac{3}{10},\,\displaystyle\frac{4}{10},\,\displaystyle\frac{5}{10},\,\displaystyle\frac{6}{10},\,\displaystyle\frac{7}{10},\,\displaystyle\frac{8}{10},\,\displaystyle\frac{9}{10},\,\displaystyle\frac{10}{10}$$
Which of the following alternatives is wrong? Given that
(i) difference of two rational numbers is a rational number
(ii) subtraction is commutative on rational numbers
(iii) addition is not commutative on rational numbers.
  • (ii) and (iii)
  • (i) only
  • (i) and (iii)
  • All the above
Which of the following statements is true?
  • The reciprocals $$1$$ and $$-1$$ are themselves
  • Zero has no reciprocal
  • The product of two rational numbers is a rational number
  • All the above
Name the property of multiplication illustrated by
$$\displaystyle \frac{-4}{3} \times \left(\displaystyle \frac{6}{5} + \frac{8}{7} \right) = \left(\displaystyle \frac{-4}{3} \times \frac{6}{5} \right) + \left(\displaystyle \frac{-4}{3} \times \frac{8}{7} \right)$$
  • Associative property
  • Commutative property
  • Distributive property
  • None of these
Find the multiplicative inverse of the following:
$$-13$$, $$\displaystyle-\frac{13}{19}$$ and $$-\displaystyle\frac{5}{8}\times\displaystyle-\frac{3}{7}$$
  • $$-\displaystyle\frac{1}{13}\;;\;\displaystyle-\frac{19}{13}\;;\;\displaystyle\frac{56}{15}$$
  • $$-\displaystyle\frac{1}{13}\;;\;\displaystyle\frac{19}{13}\;;\;\displaystyle\frac{56}{15}$$
  • $$\displaystyle\frac{1}{13}\;;\;-\displaystyle\frac{19}{13}\;;\;\displaystyle\frac{56}{15}$$
  • $$\displaystyle\frac{1}{13}\;;\;\displaystyle\frac{19}{13}\;;\;\displaystyle\frac{56}{15}$$
The multiplicative inverse of $$\displaystyle \left ( \frac{1}{3} \right )^{-2}$$ is
  • $$9$$
  • $$\displaystyle \frac{1}{9}$$
  • $$\displaystyle \frac{1}{4}$$
  • None of these
Choose the rational number which does not lie between rational numbers $$ \displaystyle \frac{3}{5} $$ and $$ \displaystyle \frac{2}{3} $$ :
  • $$ \displaystyle \frac{46}{75} $$
  • $$ \displaystyle \frac{47}{75} $$
  • $$ \displaystyle \frac{49}{75} $$
  • $$ \displaystyle \frac{50}{75} $$
Choose the rational number which does not lie between rational numbers $$\displaystyle\frac{3}{5}$$ and $$\displaystyle\frac{2}{3}$$
  • $$\displaystyle\frac{46}{75}$$
  • $$\displaystyle\frac{47}{75}$$
  • $$\displaystyle\frac{49}{75}$$
  • $$\displaystyle\frac{50}{75}$$
Find $$3$$ rational numbers between $$0$$ and $$1$$.
  • $$\displaystyle\frac{3}{2},\,\displaystyle\frac{1}{4}$$ and $$\displaystyle\frac{3}{4}$$
  • $$\displaystyle\frac{1}{2},\,\displaystyle\frac{1}{4}$$ and $$\displaystyle\frac{3}{4}$$
  • $$\displaystyle\frac{1}{2},\,\displaystyle\frac{5}{4}$$ and $$\displaystyle\frac{3}{4}$$
  • $$\displaystyle\frac{1}{2},\,\displaystyle\frac{1}{4}$$ and $$\displaystyle\frac{7}{4}$$
Choose the rational number which does not lie between rational numbers $$-\cfrac {2}{5}$$ and $$-\cfrac {1}{5}$$
  • $$-\dfrac {1}{4}$$
  • $$-\dfrac {3}{10}$$
  • $$\dfrac {3}{10}$$
  • $$-\dfrac {7}{20}$$
If $$D$$ be subset of the set of all rational  numbers, then $$D$$ is closed under the binary operations of ..............
  • addition, subtraction and division.
  • addition, multiplication and division.
  • addition, subtraction and multiplication.
  • subtraction, multiplication and division.
Find $$9$$ rational numbers between $$-\displaystyle\frac{1}{9}\;and\;\displaystyle\frac{1}{5}$$.
  • $$\displaystyle\frac{-7}{45},\,\displaystyle\frac{-3}{45},\,\displaystyle\frac{-2}{45},\,\displaystyle\frac{-1}{45},\,\displaystyle\frac{2}{45},\,\displaystyle\frac{3}{45},\,\displaystyle\frac{4}{45},\,\displaystyle\frac{5}{45},\,\displaystyle\frac{8}{45}$$
  • $$\displaystyle\frac{-4}{45},\,\displaystyle\frac{-3}{45},\,\displaystyle\frac{-2}{45},\,\displaystyle\frac{-1}{45},\,\displaystyle\frac{10}{45},\,\displaystyle\frac{3}{45},\,\displaystyle\frac{4}{45},\,\displaystyle\frac{5}{45},\,\displaystyle\frac{8}{45}$$
  • $$\displaystyle\frac{-4}{45},\,\displaystyle\frac{-3}{45},\,\displaystyle\frac{-2}{45},\,\displaystyle\frac{-1}{45},\,\displaystyle\frac{2}{45},\,\displaystyle\frac{9}{45},\,\displaystyle\frac{4}{45},\,\displaystyle\frac{5}{45},\,\displaystyle\frac{8}{45}$$
  • $$\displaystyle\frac{-4}{45},\,\displaystyle\frac{-3}{45},\,\displaystyle\frac{-2}{45},\,\displaystyle\frac{-1}{45},\,\displaystyle\frac{2}{45},\,\displaystyle\frac{3}{45},\,\displaystyle\frac{4}{45},\,\displaystyle\frac{5}{45},\,\displaystyle\frac{8}{45}$$
Choose the rational number which does not lie between rational numbers $$\displaystyle-\frac{2}{5}$$ and $$\displaystyle-\frac{1}{5}$$
  • $$\displaystyle-\frac{1}{4}$$
  • $$\displaystyle-\frac{3}{10}$$
  • $$\displaystyle\frac{3}{10}$$
  • $$\displaystyle-\frac{7}{20}$$
Four rational number equivalent to $$ \displaystyle \frac{5}{8}   $$ are:
  • $$ \displaystyle \frac{10}{6} $$,$$ \displaystyle \frac{12}{24} $$,$$ \displaystyle \frac{20}{32} $$,$$ \displaystyle \frac{25}{40} $$
  • $$ \displaystyle \frac{10}{16} $$,$$ \displaystyle \frac{15}{24} $$,$$ \displaystyle \frac{20}{32} $$,$$ \displaystyle \frac{25}{40} $$
  • $$ \displaystyle \frac{10}{16} $$,$$ \displaystyle \frac{15}{24} $$,$$ \displaystyle \frac{8}{32} $$,$$ \displaystyle \frac{25}{40} $$
  • $$ \displaystyle \frac{8}{16} $$,$$ \displaystyle \frac{15}{24} $$,$$ \displaystyle \frac{20}{32} $$,$$ \displaystyle \frac{25}{40} $$
The value of $$\dfrac {1}{2} \times \left (\dfrac {1}{3} + \dfrac {4}{9}\right )$$ is
  • $$\dfrac {7}{18}$$
  • $$\dfrac {1}{2}$$
  • $$\dfrac {7}{12}$$
  • $$\dfrac {7}{24}$$
For rational numbers $$\dfrac {a}{b}$$ and $$\dfrac {p}{q}$$, where $$a, b, p, q\in Q$$ and .............. condition exists, then they are closed under division.
  • $$b\neq 0, q\neq 1$$
  • $$b\neq 0, q\neq 0$$
  • $$b\neq 1, q\neq 1$$
  • $$b\neq 1, q\neq 0$$
Find the value of $$x$$ in $$\dfrac {4}{3} \times \left [x + \dfrac {1}{13} \right ] = \dfrac {4}{3}\times \dfrac {8}{11} + \dfrac {4}{3}\times \dfrac {1}{13}.$$
  • $$\dfrac {8}{11}$$
  • $$\dfrac {11}{8}$$
  • $$\dfrac {4}{3}$$
  • $$\dfrac {1}{13}$$
Simplify using associative property :
$$\dfrac {7}{16} \times \left (\dfrac {-24}{49} \times \dfrac {28}{15}\right )$$
  • $$\dfrac {28}{15}$$
  • $$\dfrac {2}{5}$$
  • $$\dfrac {-2}{5}$$
  • $$\dfrac {-3}{15}$$
Simplify using associative property :
$$\dfrac {-8}{9}\times \left (\dfrac {27}{32} \times \dfrac {-8}{21}\right )$$
  • $$\dfrac {2}{7}$$
  • $$\dfrac {-2}{7}$$
  • $$\dfrac {-8}{21}$$
  • $$\dfrac {-3}{4}$$
The value of $$\dfrac {6}{11} \times \left [\left (\dfrac {-7}{6}\right ) - \left (\dfrac {11}{7}\right )\right ]$$ is
  • $$\dfrac {17}{77}$$
  • $$\dfrac {-17}{77}$$
  • $$\dfrac {-115}{77}$$
  • $$\dfrac {115}{77}$$
$$ \displaystyle \frac{5}{13}+\_\_=\frac{5}{13} $$
  • $$0$$
  • $$1$$
  • $$ \displaystyle \frac{5}{13} $$
  • $$ \displaystyle \frac{2}{13} $$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 8 Maths Quiz Questions and Answers