Explanation
$${\textbf{Step - 1: Defining right angled isosceles triangle}}$$
$${\text{In geometry, an isosceles triangle means a triangle with two angles or sides equal to each other}}{\text{.}}$$
$${\text{Right angled isosceles triangle means a triangle with one angle equal to 90}}^\circ {\text{ and }}$$
$${\text{other two equal to each other}}{\text{.}}$$
$${\textbf{Step - 2: Finding all the angles}}$$
$${\text{Since one angle is equal to 90}}^\circ {\text{,}}$$
$$\therefore {\text{ x + x + 90 = 180 (interior sum property of triangle)}}$$
$$ \Rightarrow {\text{ 2x = 90}}$$
$$ \Rightarrow {\text{ x = 45}}^\circ $$
$$\mathbf{{\text{Thus, the angles in a right angles isosceles triangle are 90}}^\circ {\text{, 45}}^\circ {\text{, 45}}^\circ }$$
Please disable the adBlock and continue. Thank you.