Loading [MathJax]/jax/output/CommonHTML/jax.js
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 8 Maths Algebraic Expressions And Identities Quiz 1 - MCQExams.com
CBSE
Class 8 Maths
Algebraic Expressions And Identities
Quiz 1
Multiply :
(
a
2
+
b
)
and
(
a
+
b
2
)
Report Question
0%
a
2
+
a
2
b
2
+
a
b
−
b
3
0%
a
3
+
a
2
b
2
+
a
b
+
b
3
0%
a
3
+
a
2
b
2
−
a
b
+
b
3
0%
a
2
+
a
2
b
3
+
a
b
+
b
3
Explanation
(
a
2
+
b
)
(
a
+
b
2
)
=
a
2
(
a
+
b
2
)
+
b
(
a
+
b
2
)
=
a
3
+
a
2
b
2
+
a
b
+
b
3
Multiply
(
2
x
+
5
)
and
(
4
x
−
3
)
.
Report Question
0%
4
x
2
+
14
x
−
15
0%
4
x
2
+
14
x
+
15
0%
8
x
2
+
14
x
−
15
0%
8
x
2
+
14
x
+
15
Explanation
(
2
x
+
5
)
×
(
4
x
−
3
)
=
2
x
(
4
x
−
3
)
+
5
(
4
x
−
3
)
=
8
x
2
−
6
x
+
20
x
−
15
=
8
x
2
+
14
x
−
15
Multiply:
a
+
b
,
7
a
2
b
2
Report Question
0%
a
3
b
6
+
a
2
b
3
0%
7
a
3
b
2
+
7
a
2
b
3
0%
7
a
5
b
2
+
3
a
2
b
3
0%
a
3
b
2
+
7
a
3
b
3
Explanation
a
+
b
,
7
a
2
b
2
=
(
a
+
b
)
×
(
7
a
2
b
2
)
=
7
a
3
b
2
+
7
a
2
b
3
Simplify:
5
x
(
2
x
+
3
y
)
Report Question
0%
10
x
2
+
15
x
y
0%
10
x
4
+
15
y
0%
10
y
2
+
5
x
y
0%
10
x
2
+
15
x
Explanation
5
x
(
2
x
+
3
y
)
=
10
x
2
+
15
x
y
Evaluate using expansion of
(
a
+
b
)
2
or
(
a
−
b
)
2
:
(
9.4
)
2
Report Question
0%
88.36
0%
88.46
0%
89.16
0%
89.56
Explanation
(
a
+
b
)
2
=
a
2
+
b
2
+
2
a
b
a
=
9
,
b
=
0.4
=
9
2
+
0.4
2
+
2
∗
9
∗
0.4
=
88.36
Obtain the product of:
2
,
4
y
,
8
y
2
,
16
y
3
Report Question
0%
1024
6
0%
1000
y
6
0%
1024
y
5
0%
1024
y
6
Explanation
2
,
4
y
,
8
y
2
,
16
y
3
=
2
×
4
y
×
8
y
2
×
16
y
3
=
1024
y
6
Simplify:
(
l
+
m
)
2
−
4
l
m
Report Question
0%
(
l
−
m
)
2
0%
4
l
2
m
2
0%
(
l
+
2
m
)
2
0%
(
l
−
2
m
)
2
Explanation
(
l
+
m
)
2
−
4
l
m
=
l
2
+
2
l
m
+
m
2
−
4
l
m
=
l
2
−
2
l
m
+
m
2
=
(
l
−
m
)
2
Multiply
(
5
−
2
x
)
and
(
3
+
x
)
Report Question
0%
15
−
x
+
2
x
2
0%
15
−
x
−
x
2
0%
15
−
x
−
2
x
2
0%
15
−
x
+
x
2
Explanation
(
5
−
2
x
)
×
(
3
+
x
)
=
5
(
3
+
x
)
−
2
x
(
3
+
x
)
=
15
+
5
x
−
6
x
−
2
x
2
=
15
−
x
−
2
x
2
Find the value of
2
x
×
3
x
3
y
2
×
3
y
3
z
2
Report Question
0%
18
x
4
y
5
z
2
0%
12
x
4
y
5
z
2
0%
18
x
2
y
6
z
2
0%
18
x
4
y
5
z
3
Explanation
2
x
×
3
x
3
y
2
×
3
y
3
z
2
=
(
2
×
3
×
3
)
(
x
×
x
3
)
(
y
2
×
y
3
)
(
z
2
)
=
18
x
4
y
5
z
2
, use
a
m
×
a
n
=
a
m
+
n
Find the product of the following pairs of monomials
4
&
7
p
Report Question
0%
28
p
0%
36
p
0%
47
p
0%
32
p
Explanation
4
×
7
p
=
(
4
×
7
)
p
=
28
p
Obtain the product of:
x
y
,
y
z
,
z
x
Report Question
0%
x
3
y
2
z
2
0%
x
2
y
2
y
2
0%
x
2
y
2
z
2
0%
x
2
y
2
y
y
Explanation
x
y
,
y
z
,
z
x
=
x
y
×
y
z
×
z
x
=
x
2
y
2
z
2
(
2
x
+
3
y
)
2
=
4
x
2
+
9
y
2
+
M
, find M.
Report Question
0%
12
x
y
0%
10
x
y
0%
12
0%
10
Explanation
(
2
x
+
3
y
)
2
=
4
x
2
+
9
y
2
+
12
x
y
, .................
(
a
+
b
)
2
=
a
2
+
2
a
b
+
b
2
hence,
M
=
12
x
y
Find the product of the following pairs of monomials.
4
p
,
7
p
q
Report Question
0%
p
2
q
0%
28
p
2
q
0%
28
p
q
0%
28
p
2
Explanation
4
p
,
7
p
q
The product of the monomial pair is,
=
4
×
p
×
7
×
p
×
q
=
(
4
×
7
)
×
(
p
×
p
×
q
)
=
28
p
2
q
Find the product of the following pair of monomials.
4
p
&
7
p
Report Question
0%
28
p
+
2
0%
28
0%
28
p
2
0%
28
p
Explanation
Given:
4
p
,
7
p
The product of the monomial pair is:
=
4
×
p
×
7
×
p
=
(
4
×
7
)
×
(
p
×
p
)
=
28
p
2
Find the product of the following pairs of monomials.
4
p
&
0
Report Question
0%
4
p
0%
4
0%
4
+
p
0%
0
Explanation
4
p
,
0
The product of the monomial pair is,
=
4
×
p
×
0
=
0
Find the product of the following pairs of monomials.
4
p
3
,
3
p
Report Question
0%
12
p
0%
12
p
4
0%
12
p
+
4
0%
p
4
Explanation
4
p
3
,
3
p
The product of the monomial pair is,
=
4
×
p
×
p
×
p
×
3
×
p
=
(
4
×
3
)
×
(
p
×
p
×
p
×
p
)
=
12
p
4
Obtain the product of:
m
,
m
n
,
m
n
p
Report Question
0%
m
2
n
3
p
0%
n
3
m
2
p
0%
m
3
n
2
p
0%
m
4
n
2
p
Explanation
m
,
m
n
,
m
n
p
=
m
×
m
n
×
m
n
p
=
m
3
n
2
p
The coefficient of
x
2
in
(
2
−
3
x
2
)
(
x
2
−
5
)
is :
Report Question
0%
−
17
0%
−
10
0%
−
3
0%
17
Explanation
(
2
−
3
x
2
)
(
x
2
−
5
)
=
−
3
x
4
+
17
x
2
−
10
A
Coefficient
is a constant number multiplied with a
variable.
Here as
17
is multiplied with
x
2
. so it becomes the coefficient.
Hence,
D
is the correct answer.
Multiply: $$
4p, q + r$$
Report Question
0%
4
r
+
4
p
r
0%
4
q
+
p
r
0%
4
p
+
p
r
0%
4
p
q
+
4
p
r
Explanation
4
p
,
q
+
r
=
4
p
×
(
q
+
r
)
=
4
p
q
+
4
p
r
Multiply:
8
a
b
2
by
−
4
a
3
b
4
.
Report Question
0%
−
32
a
4
b
7
0%
−
32
a
4
b
6
0%
−
32
a
4
b
5
0%
−
32
a
5
b
6
Explanation
8
a
b
2
×
(
−
4
a
3
b
4
)
=
8
×
(
−
4
)
a
1
+
3
b
2
+
4
=
−
32
a
4
b
6
Multiply:
a
b
,
a
b
Report Question
0%
a
2
b
0%
a
2
b
2
0%
a
b
3
0%
a
3
b
3
Explanation
a
b
×
a
b
=
a
1
+
1
×
b
1
+
1
=
a
2
b
2
Find the product of
x
,
x
2
,
x
3
,
x
4
Report Question
0%
x
11
0%
x
8
0%
x
9
0%
x
10
Explanation
The exponent or product rule states that while multiplying two powers having the same base, we have to add the exponents.
⇒
x
×
x
2
×
x
3
×
x
4
⇒
x
1
+
2
+
3
+
4
⇒
x
10
The product of
4
x
2
−
7
x
+
19
and
(
−
2
x
)
when
x
=
0
is:
Report Question
0%
19
0%
−
38
0%
17
0%
0
Explanation
Any real number when multiplied by 0 gives 0.
Here at
x
=
0
,
−
2
x
=
0
and hence the result of multiplication will also be zero.
Simplify:
5
x
2
(
x
+
5
)
+
25
Report Question
0%
5
x
3
+
25
x
+
25
0%
5
x
3
+
50
x
0%
5
x
3
+
25
x
2
+
25
0%
5
x
3
+
25
x
Explanation
5
x
2
(
x
+
5
)
+
25
=
5
x
3
+
25
x
2
+
25
Multiply:
a
2
−
9
,
4
a
Report Question
0%
4
a
3
−
36
a
0%
3
a
3
−
36
a
0%
3
a
3
+
36
a
0%
4
a
3
+
36
a
Explanation
a
2
−
9
,
4
a
=
a
2
−
9
×
4
a
=
4
a
3
−
36
a
State whether True or False.
Multiply:
−
3
2
x
5
y
3
and
4
9
a
2
x
3
y
.
The answer is
−
2
3
a
2
x
8
y
4
.
Report Question
0%
True
0%
False
Explanation
−
3
2
x
5
y
3
×
4
9
a
2
x
3
y
=
(
−
3
2
)
(
4
9
)
a
x
5
+
3
y
(
3
+
1
)
=
−
2
3
a
2
x
8
y
4
State whether True or False.
Multiply:
a
b
x
,
−
3
a
2
x
and
7
b
2
x
3
.
The value is
−
21
a
3
b
3
x
5
.
Report Question
0%
True
0%
False
Explanation
(
a
b
x
)
×
(
3
a
2
x
)
×
(
7
b
2
x
3
)
=
(
−
3
)
(
7
)
a
1
+
2
b
1
+
2
x
1
+
1
+
3
=
−
21
a
3
b
3
x
5
State whether True or False.
On multiplying
a
2
,
a
b
and
b
2
, we get
the answer as
a
3
b
3
.
Report Question
0%
True
0%
False
Explanation
The given terms are
a
2
,
a
b
and
b
2
On multiplying the given terms, we get:
a
2
×
a
b
×
b
2
Using the laws of exponent, we know that,
a
m
×
a
n
=
a
m
+
n
∴
a
2
×
a
b
×
b
2
=
a
2
+
1
b
1
+
2
⇒
a
3
b
3
∴
a
2
×
a
b
×
b
2
=
a
3
b
3
Hence, the given statement is true.
State whether True or False.
Multiply:
−
3
b
x
,
−
5
x
y
and
−
7
b
2
x
3
.
The answer is
−
105
b
3
x
5
y
.
Report Question
0%
True
0%
False
Explanation
(
3
b
x
)
×
(
5
x
y
)
×
(
7
b
2
x
3
)
=
(
−
3
)
(
−
5
)
(
−
7
)
b
1
+
2
x
1
+
1
+
3
y
1
=
−
105
b
3
x
5
y
State whether True or False.
Multiply:
2
a
3
−
3
a
2
b
and
−
1
2
a
b
2
.
The value is
−
a
4
b
2
+
3
2
a
3
b
3
.
Report Question
0%
True
0%
False
Explanation
As given
2
a
3
−
3
a
2
b
and
−
1
2
a
b
2
⇒
2
a
3
×
−
1
2
a
b
2
−
3
a
2
b
×
−
1
2
a
b
2
⇒
−
a
3
×
a
b
2
+
3
2
a
2
b
×
a
b
2
⇒
−
a
3
+
1
b
2
+
3
2
a
2
+
1
b
1
+
2
⇒
−
a
4
b
2
+
3
2
a
3
b
3
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 8 Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page