Explanation
$${\textbf{Step -1 : Perform the product of }}\mathbf{a,{a^2},{a^3}.}$$
$$a \times {a^2} \times {a^3}$$
$$ = {a^1} \times {a^2} \times {a^3}.$$
$$ = {a^{\left( {1 + 2 + 3} \right).}}$$
$${\textbf{Step -2 : Calculate by adding the powers}}{\textbf{.}}$$
$$ = {a^6}.$$
$${\textbf{Hence , the product of }}\mathbf{a,{a^2},{a^3}{\text{ is }}{a^6}}\textbf {and correct answer is option C}$$
We know, $$ 103 \times 97 = (100 + 3) \times (100 - 3) $$ .Applying the formula $$ (a+b)(a-b) = { a }^{ 2 }-{ b }^{ 2 } $$, where $$ a = 100 , b = 3 $$,
we get,$$ 103 \times 97 = (100 + 3) \times (100 - 3) = { 100 }^{ 2 }-{ 3 }^{ 2 } = 10000 - 9= 9991 $$.
Therefore, option $$B$$ is correct.
We know, $$ 9.8 \times 10.2 = (10 -0.2) \times (10+0.2) $$ .Applying the formula $$ (a+b)(a-b) = { a }^{ 2 }-{ b }^{ 2 } $$, where $$ a = 10 , b = 0.2 $$,
we get,$$ 9.8 \times 10.2 = (10 -0.2) \times (10+0.2)=10^2-(0.2)^2 \\ =100-0.04=99.96 .$$
Therefore, option $$D$$ is correct.
Please disable the adBlock and continue. Thank you.