CBSE Questions for Class 8 Maths Algebraic Expressions And Identities Quiz 4 - MCQExams.com

State whether the statement is True or False:
$$(2a+3)(2a-3)(4a^2+9)$$ is equal to $$16a^4-81$$.
  • True
  • False
Carry out the multiplication of the expressions in the following pair: 
$$4p,q+r$$
  • $$ pq - 4pr$$
  • $$ 4pq + 4pr$$
  • $$ pq + 4pr$$
  • $$ 4q + 4pr$$
Use the identity $$ (a+b)(a-b) = a^2-b^2$$ to evaluate:
$$8.3\times 7.7 $$.
  • $$63.91$$
  • $$63.81$$
  • $$64.91$$
  • $$64.21$$
State whether the statement is True or False:
$$(a-2b)^2 $$ is equal to $$a^2-4ab+4b^2$$.
  • True
  • False
State whether the statement is True or False:
$$(2a+b)^2 $$ is equal to $$4a^2+4ab+b^2$$.
  • True
  • False
State whether the statement is True or False:
$$\left(3x-\dfrac{1}{2y}\right)\left(3x+\dfrac{1}{2y}\right)$$ is equal to $$9x^2-\dfrac{1}{4y^2}$$.
  • True
  • False
State whether the statement is True or False:
$$(6-xy)(6+xy)$$ is equal to $$36-x^2y^2$$.
  • True
  • False
Simplify: $$\left (\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2}  \right)$$.
  • $$3$$
  • $$5$$
  • $$6$$
  • $$8$$
State whether the statement is True or False:
$$(2x-\dfrac{1}{2x})^2 $$ is equal to $$4x^2-2+\dfrac{1}{4x^2} $$.
  • True
  • False
Evaluate using expansion of $$(a+b)^2$$ or $$(a-b)^2$$ :
$$(208)^2$$
  • 45264
  • 45294
  • 43284
  • 43264
State whether the statement is True or False:
Expanding $$\left(3x-\dfrac{1}{3x}\right)^2 $$, we get $$9x^2-2+\dfrac{1}{9x^2} $$.
  • True
  • False
State whether the statement is True or False:
The square of $$(a+\dfrac{1}{5a})$$ is $$a^2+1+\dfrac{1}{4a^2}$$.
  • True
  • False
State whether the statement is True or False:
$$(a+\dfrac{1}{2a})^2 $$ is equal to $$a^2+1+\dfrac{1}{4a^2} $$.
  • True
  • False
State whether the statement is True or False:
$$\left(2a-\dfrac{1}{a}\right)^2 $$ is equal to $$4a^2-4+\dfrac{1}{a^2} $$.
  • True
  • False
The expression $$\displaystyle -8{ x }^{ 3 }\left( 7{ x }^{ 6 }-3{ x }^{ 5 } \right) $$ equals:
  • $$\displaystyle -56{ x }^{ 9 }+24{ x }^{ 8 }$$
  • $$\displaystyle -56{ x }^{ 9 }-24{ x }^{ 8 }$$
  • $$\displaystyle -56{ x }^{ 18 }+24{ x }^{ 15 }$$
  • $$\displaystyle -56{ x }^{ 18 }-24{ x }^{ 15 }$$
  • $$\displaystyle -32{ x }^{ 4 }$$
State whether the statement is True or False:
The square of $$(x+3y)$$ is equal to $$x^2+6xy+9y^2$$.
  • True
  • False
State whether the statement is True or False:
The square of $$ (\dfrac{5a}{6b}+ \dfrac{6b}{5a} )$$ is equal to $$\dfrac{25a^2}{36b^2} -2+\dfrac{36b^2}{25a^2} $$.
  • True
  • False
State whether the statement is True or False.
Evaluate: $$(m+3)(m-3)(m^2+9)$$ is equal to $$m^4-81$$.
  • True
  • False
State whether the statement is True or False:
The square of $$(3x+\dfrac{2}{y} )$$ is equal to $$9x^2+\dfrac{12x}{y}+\dfrac{4}{y^2} $$.
  • True
  • False
Evaluate:
$$203\times 197$$
  • 39991
  • 39891
  • 39981
  • 38981
State whether the statement is True or False:
$$(1.6x+0.7y)(1.6x-0.7y)$$ is equal to $$2.56x^2-0.49y^2$$.
  • True
  • False
Evaluate:
$$20.8 \times 19.2$$
  • 399.86
  • 398.16
  • 399.36
  • 398.56
State whether the statement is True or False:
$$(6-5xy)(6+5xy)$$ is equal to $$36-25x^2y^2$$.
  • True
  • False
State whether the statement is True or False.
$$\left(2a+\dfrac { 1 }{2 a } \right)\left(2a-\dfrac { 1 }{2 a } \right)$$ is equal to $$4a^2-\dfrac{1}{4a^2} $$.
  • True
  • False
State whether the statement is True or False:
$$(2x-\dfrac{3}{5})(2x+\dfrac{3}{5})$$ is equal to $$4x^2-\dfrac{9}{25}$$.
  • True
  • False
State whether the statement is True or False:
$$(4x^2-5y^2)(4x^2+5y^2)$$ is equal to $$16x^4-25y^4$$.
  • True
  • False
State whether the statement is True or False:
The square of $$(8x+\dfrac{3}{2}y )$$ is equal to $$64x^2+24xy+\frac{9}{4}y^2 $$.
  • True
  • False
Find the square of:
 $$ 9.7$$
  • 97.09
  • 94.09
  • 96.09
  • 93.09
Find the square of: $$3a - 4b$$.
  • $$a^{2}\, +\, 4ab\, +\,b^{2}$$
  • $$9a^{2}\, -\, 24ab\, +\,16b^{2}$$
  • $$9a^{2}\, -\, ab\, +\,16b^{2}$$
  • $$9a^{2}\, +\, 24ab\, +\,b^{2}$$
State whether the statement is True or False:
The square of $$(2m^2-\dfrac{2}{3}n^2 )$$ is equal to $$4m^4-\dfrac{8}{3}m^2n^2+\dfrac{4}{9}n^4$$.
  • True
  • False
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 8 Maths Quiz Questions and Answers