Explanation
$$ 203 \times 197 = (200 + 3) \times (200 - 3) $$ Applying the formula $$ (a+b)(a-b) = { a }^{ 2 }-{ b }^{ 2 } $$, where $$ a =200 , b = 3 $$$$ 203 \times 197 = (200 + 3) \times (200 - 3) = { 200 }^{ 2 }-{ 3 }^{ 2 } = 40,000 - 9 = 39991 $$
$$ 20.8 \times 19.2 = (20+ 0.8) \times (20 - 0.8) $$ Applying the formula $$ (a+b)(a-b) = { a }^{ 2 }-{ b }^{ 2 } $$, where $$ a =20 , b = 0.8 $$
$$ 20.8 \times 19.2 = (20+ 0.8) \times (20 - 0.8) = { 20 }^{ 2 }-{ 0.8 }^{ 2 } = 400 - 0.64= 399.36 $$
We can write
$$ {9.7}^{2} = {(10 - 0.3)}^{2} $$It is the form of $$ {(a - b)}^{2} $$, where $$ a = 10, b = 0.3 $$Applying the formula $$ { (a - b) }^{ 2 } = {a}^{2} + { b }^{ 2 } - 2ab$$$$ {9.7}^{2} = {(10 - 0.3)}^{2} = {10}^{2} + { 0.3 }^{ 2 } -2\times 10 \times 0.3 = 100 + 0.09 - 6 = 94.09 $$
Please disable the adBlock and continue. Thank you.