Explanation
3912=(400−9)2It is the form of (a−b)2, where a=400,b=9Applying the formula (a−b)2=a2+b2−2ab3912=(400−9)2=4002+92−2×400×9=1,60,000+81−7200=152881
607 can be written as 600+7
∴6072=(600+7)2It is the form of (a+b)2, where a=600,b=7Applying the formula (a+b)2=a2+b2+2ab6072=(600+7)2=6002+72+2×600×7=360000+49+8400=368449
Given, (4a+3b)2−(4a−3b)2+48ab.
We know, (a+b)2=a2+2ab+b2
and (a−b)2=a2−2ab+b2.
Given, (2x7−7y4)2.
We know, (a−b)2=a2+2ab+b2.
Then,
(2x7−7y4)2
=(2x7)2−2(2x7)(7y4)+(7y4)2
=4x249−xy+49y216.
Therefore, ption C is correct.
Given, (78x+45y)2.
We know, (x+y)2=x2+2xy+y2.
(78x+45y)2
=(78x)2+2(78x)(45y)+(45y)2
=4964x2+75xy+1625y2.
Therefore, option D is correct.
Find the missing term in the following problem:
(3x4−4y3)2=9x216+..........+16y29.
Given, (3x4−4y3)2.
We know, (a−b)2=a2−2ab+b2.
(3x4−4y3)2
=(3x4)2−2(3x4)(4y3)+(4y3)2
=9x216−2xy+16y29
=9x216+(−2xy)+16y29.
Hence, the missing term is −2xy.
Therefore, option B is correct.
Please disable the adBlock and continue. Thank you.