Processing math: 14%

CBSE Questions for Class 8 Maths Algebraic Expressions And Identities Quiz 5 - MCQExams.com

Find the square of:
391
  • 154881
  • 153881
  • 152881
  • 151881
Find the square of: (3a+7b).
  • 9a2+12ab+22b2
  • 9a2+2ab49b2
  • 9a2+42ab+49b2
  • 9a242ab+9b2
Find the square of: 2a+b.
  • 4a24b+b3
  • a2+4ab+b3
  • a24b+b2
  • 4a2+4ab+b2
Find the square of the following number: 998
  • 9,96,004
  • 9,15,004
  • 9,77,004
  • 9,83,004
Find the square of:
607
  • 368549
  • 368449
  • 368349
  • 368249
Multiply 2x, \dfrac{5y}{2} and z^2
  • 5x y z^2 
  • 2x y z^2 
  • 5x y^2 z 
  • none of these
Evaluate: (4a\, +\, 3b)^{2}\, -\, (4a\, -\, 3b)^{2}\, +\, 48\, ab.
  • 76 ab
  • 96 ab
  • 46 ab
  • 106 ab
Evaluate: \displaystyle \left(\frac{2x}{7}\, -\, \frac{7y}{4}\right)^{2}.
  • \displaystyle \left(\frac{4x^{2}}{32}\,+\, \frac{49y^{2}}{16}\, +\, xy\right)
  • \displaystyle \left(\frac{4x^{2}}{15}\,+\, \frac{49y^{2}}{16}\, +\, xy\right)
  • \displaystyle \left(\frac{4x^{2}}{49}\,+\, \frac{49y^{2}}{16}\, -\, xy\right)
  • \displaystyle \left(\frac{4x^{2}}{19}\,+\, \frac{49y^{2}}{16}\, -\, xy\right)
Evaluate: \displaystyle\left(\dfrac{7}{8}{x}\, +\, \dfrac{4}{5}{y}\right )^{2}.
  • \displaystyle \frac{49}{64}{x^{2}}\, +\, \frac{6}{25}{y^{2}}\, +\, \frac{7}{5}{xy}
  • \displaystyle \frac{18}{77}{x^{2}}\, +\, \frac{16}{5}{y^{2}}\, +\, \frac{1}{5}{xy}
  • \displaystyle \frac{13}{22}{x^{2}}\, +\, \frac{16}{25}{y^{2}}\, +\, \frac{1}{5}{xy}
  • \displaystyle \frac{49}{64}{x^{2}}\, +\, \frac{16}{25}{y^{2}}\, +\, \frac{7}{5}{xy}
The product of \displaystyle \left ( \frac{4p}{5}-3 \right ) and \displaystyle \left ( \frac{5p}{8}-6 \right ) is
  • \displaystyle \frac{p^{2}}{2}+\frac{267}{40}p-18
  • \displaystyle \frac{p^{2}}{2}-\frac{267}{40}p-18
  • \displaystyle \frac{p^{2}}{2}+\frac{267}{40}p+18
  • \displaystyle \frac{p^{2}}{2}-\frac{267}{40}p+18
Simplify the following expression : x (y - z) - y (z - x) - z (x - y)
  • 2x (y - z)
  • 2y (z -x)
  • 2x ( z- y)
  • None
\displaystyle \left( \frac { 1 }{ 5 } x-\frac { 1 }{ 6 } y \right) \left( 5x+6y \right)  is equal to
  • \displaystyle { x }^{ 2 }-\frac { 11xy }{ 30 } -{ y }^{ 2 }
  • \displaystyle { x }^{ 2 }+\frac { 11xy }{ 30 } -{ y }^{ 2 }
  • \displaystyle { x }^{ 2 }+\frac { 11xy }{ 30 } +{ y }^{ 2 }
  • \displaystyle { x }^{ 2 }-\frac { 11xy }{ 30 } +{ y }^{ 2 }
Find the product: \displaystyle \left( -3axy \right) \times \left( -15{ a }^{ 2 }{ xy }^{ 2 }z \right) 
  • \displaystyle -45{ a }^{ 3 }{ x }^{ 2 }{ y }^{ 3 }z
  • \displaystyle -45{ a }^{ 2 }{ x }^{ 2 }{ y }^{ 2 }
  • \displaystyle 45{ a }^{ 3 }{ x }^{ 2 }{ y }^{ 3 }z
  • \displaystyle -45{ a }{ x }^{ 2 }{ y }^{ 2 }z
\displaystyle \left ( z^{2}+13 \right )\left ( z^{2}-5 \right ) is equal to
  • \displaystyle 2z^{4}+18z^{2}-8
  • \displaystyle z^{4}+8z^{2}-65
  • \displaystyle z^{4}-8z^{2}-65
  • \displaystyle z^{4}+8z^{2}+65
Simplify:\displaystyle \left ( p-q \right )^{2}+4pq.
  • \displaystyle p^{2}-q^{2}
  • \displaystyle \left ( p+q \right )^{2}
  • \displaystyle \left ( 2p-q \right )^{2}
  • \displaystyle \left ( 2p-2q \right )^{2}
The product of \displaystyle 4a^{2},-6b^{2} and \displaystyle 3a^{2}b^{2} is
  • \displaystyle a^{2}b^{2}
  • \displaystyle 13a^{4}b^{4}
  • \displaystyle -72a^{4}b^{4}
  • \displaystyle a^{4}b^{4}
When \displaystyle a^{2}b\left ( a^{3}-a+1 \right )-ab\left ( a^{4}-2a^{2}+2a \right )-b\left ( a^{3}-a^{2}-1 \right ) is simplified, the answer is
  • \displaystyle -a^{2}b
  • ab
  • b
  • 0
The value of \displaystyle \left ( x+4 \right )(x+3)-\left ( x-4 \right )\left ( x-3 \right ) is equal to
  • \displaystyle 2x^{2}-14x+24
  • \displaystyle 2x^{2}+14x-24
  • 14x
  • 24
\displaystyle \left ( \frac{2}{5}ab+c \right )\left ( \frac{2}{5}ab-c \right ) is equal to
  • \displaystyle \frac{4}{25}a^{2}b^{2}-\frac{4}{5}abc+c^{2}
  • \displaystyle \frac{4}{25}a^{2}b^{2}+\frac{4}{5}abc+c^{2}
  • \displaystyle \frac{4}{25}a^{2}b^{2}-c^{2}
  • \displaystyle \frac{4}{25}a^{2}b^{2}+c^{2}
\displaystyle \left ( -a-b \right )\left ( b-a \right ) is equal to
  • \displaystyle a^{2}+b^{2}
  • \displaystyle b^{2}-a^{2}
  • \displaystyle a^{2}-b^{2}
  • \displaystyle -\left ( b^{2}+a^{2} \right )
\displaystyle \left ( x+4 \right )\left ( x-4 \right )\left ( x^{2}+16 \right ) is equal to:
  • \displaystyle x^{2}-64
  • \displaystyle x^{4}-64
  • \displaystyle x^{4}-256
  • \displaystyle x^{2}-256
\displaystyle \left ( mx-ny \right )\left ( mx-ny \right )=_____
  • \displaystyle m^{2}x^{2}+2mxny-n^{2}y^{2}
  • \displaystyle m^{2}x^{2}-2mxny-n^{2}y^{2}
  • \displaystyle m^{2}x^{2}-2mxny+n^{2}y^{2}
  • \displaystyle m^{2}x^{2}+2mxny+n^{2}y^{2}
The product of \displaystyle \left ( \frac{1}{5}x^{2}-\frac{1}{6}y^{2} \right ) and \displaystyle \left ( 5x^{2}+6y^{2} \right ) is
  • 1
  • \displaystyle x^{4}+\frac{11}{60}x^{2}y^{2}+y^{4}
  • \displaystyle x^{4}+\frac{11}{30}x^{2}y^{2}-y^{4}
  • \displaystyle x^{4}-\frac{11}{30}x^{2}y^{2}-y^{4}
The product of (3x^2\, -\, 5x\, +\, 6) and -8x^3  when x=0 is
  • \displaystyle\frac{1}{2}
  • 2
  • 1
  • 0
\displaystyle \left ( a+b \right )^{2}-\left ( b-a \right )^{2}=______
  • \displaystyle \left ( 2a+2b \right )
  • \displaystyle \left ( 2a-2b \right )
  • \displaystyle 4ab
  • \displaystyle -4ab
The value of (501)^2\,  -\, (500)^2 is :
  • 1
  • 101
  • 1,001
  • None of these
Find the product of the following pairs of monomials:
4, 7p
  • 13p^2
  • 22p^2
  • 28p
  • 8p
Find the product of the following pairs of monomials:
-4p, 7p
  • -28p^2
  • 14p^2
  • -12p^2
  • 16p^2
a^{2} + 4a + 4 =
  • (a + 2)^{2}
  • (a + 1)^{2}
  • (a - 2)^{2}
  • (a - 1)^{2}

Find the missing term in the following problem:

\left(\displaystyle \frac{3x}{4}\, -\, \displaystyle \frac{4y}{3} \right )^2\, =\, \displaystyle \frac{9x^2}{16}\, +\, ..........\, +\, \displaystyle \frac{16y^2}{9}.

  • 2xy
  • - 2xy
  • 12xy
  • - 12xy
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 8 Maths Quiz Questions and Answers