CBSE Questions for Class 8 Maths Algebraic Expressions And Identities Quiz 5 - MCQExams.com

Find the square of:
$$391 $$
  • 154881
  • 153881
  • 152881
  • 151881
Find the square of: $$(3a + 7b)$$.
  • $$9a^{2}\, +\, 12ab\, +\, 22b^{2}$$
  • $$9a^{2}\, +\, 2ab\, -\, 49b^{2}$$
  • $$9a^{2}\, +\, 42ab\, +\, 49b^{2}$$
  • $$9a^{2}\, -\, 42ab\, +\, 9b^{2}$$
Find the square of: $$2a + b$$.
  • $$4a^{2}\, -\, 4b\, +\, b^{3}$$
  • $$a^{2}\, +\, 4ab\, +\, b^{3}$$
  • $$a^{2}\, -\, 4b\, +\, b^{2}$$
  • $$4a^{2}\, +\, 4ab\, +\, b^{2}$$
Find the square of the following number: $$998$$
  • $$9,96,004$$
  • $$9,15,004$$
  • $$9,77,004$$
  • $$9,83,004$$
Find the square of:
$$607 $$
  • 368549
  • 368449
  • 368349
  • 368249
Multiply $$2x$$, $$\dfrac{5y}{2}$$ and $$z^2$$
  • $$5x y z^2$$ 
  • $$2x y z^2$$ 
  • $$5x y^2 z$$ 
  • none of these
Evaluate: $$(4a\, +\, 3b)^{2}\, -\, (4a\, -\, 3b)^{2}\, +\, 48\, ab$$.
  • $$76 ab$$
  • $$96 ab$$
  • $$46 ab$$
  • $$106 ab$$
Evaluate: $$\displaystyle \left(\frac{2x}{7}\, -\, \frac{7y}{4}\right)^{2}$$.
  • $$\displaystyle \left(\frac{4x^{2}}{32}\,+\, \frac{49y^{2}}{16}\, +\, xy\right)$$
  • $$\displaystyle \left(\frac{4x^{2}}{15}\,+\, \frac{49y^{2}}{16}\, +\, xy\right)$$
  • $$\displaystyle \left(\frac{4x^{2}}{49}\,+\, \frac{49y^{2}}{16}\, -\, xy\right)$$
  • $$\displaystyle \left(\frac{4x^{2}}{19}\,+\, \frac{49y^{2}}{16}\, -\, xy\right)$$
Evaluate: $$\displaystyle\left(\dfrac{7}{8}{x}\, +\, \dfrac{4}{5}{y}\right )^{2}$$.
  • $$\displaystyle \frac{49}{64}{x^{2}}\, +\, \frac{6}{25}{y^{2}}\, +\, \frac{7}{5}{xy}$$
  • $$\displaystyle \frac{18}{77}{x^{2}}\, +\, \frac{16}{5}{y^{2}}\, +\, \frac{1}{5}{xy}$$
  • $$\displaystyle \frac{13}{22}{x^{2}}\, +\, \frac{16}{25}{y^{2}}\, +\, \frac{1}{5}{xy}$$
  • $$\displaystyle \frac{49}{64}{x^{2}}\, +\, \frac{16}{25}{y^{2}}\, +\, \frac{7}{5}{xy}$$
The product of $$\displaystyle \left ( \frac{4p}{5}-3 \right )$$ and $$\displaystyle \left ( \frac{5p}{8}-6 \right )$$ is
  • $$\displaystyle \frac{p^{2}}{2}+\frac{267}{40}p-18$$
  • $$\displaystyle \frac{p^{2}}{2}-\frac{267}{40}p-18$$
  • $$\displaystyle \frac{p^{2}}{2}+\frac{267}{40}p+18$$
  • $$\displaystyle \frac{p^{2}}{2}-\frac{267}{40}p+18$$
Simplify the following expression : $$x (y - z) - y (z - x) - z (x - y)$$
  • $$2x (y - z)$$
  • $$2y (z -x)$$
  • $$2x ( z- y)$$
  • None
$$\displaystyle \left( \frac { 1 }{ 5 } x-\frac { 1 }{ 6 } y \right) \left( 5x+6y \right) $$ is equal to
  • $$\displaystyle { x }^{ 2 }-\frac { 11xy }{ 30 } -{ y }^{ 2 }$$
  • $$\displaystyle { x }^{ 2 }+\frac { 11xy }{ 30 } -{ y }^{ 2 }$$
  • $$\displaystyle { x }^{ 2 }+\frac { 11xy }{ 30 } +{ y }^{ 2 }$$
  • $$\displaystyle { x }^{ 2 }-\frac { 11xy }{ 30 } +{ y }^{ 2 }$$
Find the product: $$\displaystyle \left( -3axy \right) \times \left( -15{ a }^{ 2 }{ xy }^{ 2 }z \right) $$
  • $$\displaystyle -45{ a }^{ 3 }{ x }^{ 2 }{ y }^{ 3 }z$$
  • $$\displaystyle -45{ a }^{ 2 }{ x }^{ 2 }{ y }^{ 2 }$$
  • $$\displaystyle 45{ a }^{ 3 }{ x }^{ 2 }{ y }^{ 3 }z$$
  • $$\displaystyle -45{ a }{ x }^{ 2 }{ y }^{ 2 }z$$
$$\displaystyle \left ( z^{2}+13 \right )\left ( z^{2}-5 \right )$$ is equal to
  • $$\displaystyle 2z^{4}+18z^{2}-8$$
  • $$\displaystyle z^{4}+8z^{2}-65$$
  • $$\displaystyle z^{4}-8z^{2}-65$$
  • $$\displaystyle z^{4}+8z^{2}+65$$
Simplify:$$\displaystyle \left ( p-q \right )^{2}+4pq$$.
  • $$\displaystyle p^{2}-q^{2}$$
  • $$\displaystyle \left ( p+q \right )^{2}$$
  • $$\displaystyle \left ( 2p-q \right )^{2}$$
  • $$\displaystyle \left ( 2p-2q \right )^{2}$$
The product of $$\displaystyle 4a^{2},-6b^{2}$$ and $$\displaystyle 3a^{2}b^{2}$$ is
  • $$\displaystyle a^{2}b^{2}$$
  • $$\displaystyle 13a^{4}b^{4}$$
  • $$\displaystyle -72a^{4}b^{4}$$
  • $$\displaystyle a^{4}b^{4}$$
When $$\displaystyle a^{2}b\left ( a^{3}-a+1 \right )-ab\left ( a^{4}-2a^{2}+2a \right )-b\left ( a^{3}-a^{2}-1 \right )$$ is simplified, the answer is
  • $$\displaystyle -a^{2}b$$
  • $$ab$$
  • $$b$$
  • $$0$$
The value of $$\displaystyle \left ( x+4 \right )(x+3)-\left ( x-4 \right )\left ( x-3 \right )$$ is equal to
  • $$\displaystyle 2x^{2}-14x+24$$
  • $$\displaystyle 2x^{2}+14x-24$$
  • $$14x$$
  • $$24$$
$$\displaystyle \left ( \frac{2}{5}ab+c \right )\left ( \frac{2}{5}ab-c \right )$$ is equal to
  • $$\displaystyle \frac{4}{25}a^{2}b^{2}-\frac{4}{5}abc+c^{2}$$
  • $$\displaystyle \frac{4}{25}a^{2}b^{2}+\frac{4}{5}abc+c^{2}$$
  • $$\displaystyle \frac{4}{25}a^{2}b^{2}-c^{2}$$
  • $$\displaystyle \frac{4}{25}a^{2}b^{2}+c^{2}$$
$$\displaystyle \left ( -a-b \right )\left ( b-a \right )$$ is equal to
  • $$\displaystyle a^{2}+b^{2}$$
  • $$\displaystyle b^{2}-a^{2}$$
  • $$\displaystyle a^{2}-b^{2}$$
  • $$\displaystyle -\left ( b^{2}+a^{2} \right )$$
$$\displaystyle \left ( x+4 \right )\left ( x-4 \right )\left ( x^{2}+16 \right )$$ is equal to:
  • $$\displaystyle x^{2}-64$$
  • $$\displaystyle x^{4}-64$$
  • $$\displaystyle x^{4}-256$$
  • $$\displaystyle x^{2}-256$$
$$\displaystyle \left ( mx-ny \right )\left ( mx-ny \right )$$=_____
  • $$\displaystyle m^{2}x^{2}+2mxny-n^{2}y^{2}$$
  • $$\displaystyle m^{2}x^{2}-2mxny-n^{2}y^{2}$$
  • $$\displaystyle m^{2}x^{2}-2mxny+n^{2}y^{2}$$
  • $$\displaystyle m^{2}x^{2}+2mxny+n^{2}y^{2}$$
The product of $$\displaystyle \left ( \frac{1}{5}x^{2}-\frac{1}{6}y^{2} \right )$$ and $$\displaystyle \left ( 5x^{2}+6y^{2} \right )$$ is
  • $$1$$
  • $$\displaystyle x^{4}+\frac{11}{60}x^{2}y^{2}+y^{4}$$
  • $$\displaystyle x^{4}+\frac{11}{30}x^{2}y^{2}-y^{4}$$
  • $$\displaystyle x^{4}-\frac{11}{30}x^{2}y^{2}-y^{4}$$
The product of $$(3x^2\, -\, 5x\, +\, 6)$$ and $$-8x^3$$  when $$x=0$$ is
  • $$\displaystyle\frac{1}{2}$$
  • $$2$$
  • $$1$$
  • $$0$$
$$\displaystyle \left ( a+b \right )^{2}-\left ( b-a \right )^{2}$$=______
  • $$\displaystyle \left ( 2a+2b \right )$$
  • $$\displaystyle \left ( 2a-2b \right )$$
  • $$\displaystyle 4ab$$
  • $$\displaystyle -4ab$$
The value of $$(501)^2\,  -\, (500)^2$$ is :
  • $$1$$
  • $$101$$
  • $$1,001$$
  • None of these
Find the product of the following pairs of monomials:
$$4, 7p$$
  • $$13p^2$$
  • $$22p^2$$
  • $$28p$$
  • $$8p$$
Find the product of the following pairs of monomials:
$$-4p, 7p$$
  • $$-28p^2$$
  • $$14p^2$$
  • $$-12p^2$$
  • $$16p^2$$
$$a^{2} + 4a + 4$$ =
  • $$(a + 2)^{2}$$
  • $$(a + 1)^{2}$$
  • $$(a - 2)^{2}$$
  • $$(a - 1)^{2}$$

Find the missing term in the following problem:

$$\left(\displaystyle \frac{3x}{4}\, -\, \displaystyle \frac{4y}{3} \right )^2\, =\, \displaystyle \frac{9x^2}{16}\, +\, ..........\, +\, \displaystyle \frac{16y^2}{9}$$.

  • $$2xy$$
  • $$- 2xy$$
  • $$12xy$$
  • $$- 12xy$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 8 Maths Quiz Questions and Answers