MCQExams
0:0:4
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 8 Maths Algebraic Expressions And Identities Quiz 6 - MCQExams.com
CBSE
Class 8 Maths
Algebraic Expressions And Identities
Quiz 6
Find the missing term in the following
problem.
(
3
x
4
−
4
y
3
)
2
=
9
x
2
16
+
.
.
.
.
.
.
.
.
.
+
16
y
2
9
(
3
x
4
−
4
y
3
)
2
=
9
x
2
16
+
.
.
.
.
.
.
.
.
.
+
16
y
2
9
Report Question
0%
2
x
y
2
x
y
0%
−
2
x
y
−
2
x
y
0%
12
x
y
12
x
y
0%
−
12
x
y
−
12
x
y
Explanation
The L.H.S. of the algebraic expression is of the form
(
a
−
b
)
2
(
a
−
b
)
2
where,
a
=
3
x
4
&
b
=
4
y
3
a
=
3
x
4
&
b
=
4
y
3
.
(
a
−
b
)
2
=
a
2
−
2
a
b
+
b
2
⟹
(
3
x
4
−
4
y
3
)
=
(
3
x
4
)
2
−
2
×
3
x
4
×
4
y
3
+
(
4
y
3
)
2
=
9
x
2
16
−
2
x
y
+
16
y
2
9
.
So the middle term
−
2
x
y
is missing.
Find the areas of rectangles with the following pairs of monomials as their lengths and breadths
respectively
(
p
,
q
)
;
(
10
m
,
5
n
)
;
(
20
x
2
,
5
y
2
)
;
(
4
x
,
3
x
2
)
;
(
3
m
n
,
4
n
p
)
Report Question
0%
100
x
2
y
2
;
12
x
3
;
12
m
n
2
p
0%
100
x
2
y
2
;
12
x
2
;
12
m
n
2
p
0%
100
x
2
y
;
12
x
3
;
12
m
n
2
p
0%
100
x
2
y
2
;
12
x
3
;
12
m
n
p
Explanation
We know that the area of a rectangle = I
×
b, where I = length and b = breadth.
Therefore, the areas of rectangles with pair of monomials
(
p
,
q
)
,
(
10
m
,
5
n
)
;
(
20
x
2
,
5
y
2
)
;
(
4
x
,
3
x
2
)
and
(
3
m
n
,
4
n
p
)
as their lengths and breadths are given by
p
×
q
=
p
q
1.
10
m
×
n
=
(
10
×
5
)
×
(
m
×
n
)
=
50
m
n
2.
20
x
2
×
5
y
2
=
(
20
×
5
)
×
(
x
2
×
y
2
)
=
100
x
2
y
2
3.
4
x
×
3
x
2
=
(
4
×
3
)
×
(
x
×
x
2
)
=
12
x
3
and,
4.
3
m
n
×
4
n
p
=
(
3
×
4
)
×
(
m
×
n
×
n
×
p
)
=
12
m
n
2
p
Multiply the binomials
(
2
x
+
5
)
and
(
4
x
−
3
)
Report Question
0%
8
x
2
+
14
x
−
15
0%
7
x
2
−
14
x
−
15
0%
x
2
+
14
x
−
18
0%
None of these
Explanation
(
2
x
+
5
)
×
(
4
x
−
3
)
=
2
x
(
4
x
−
3
)
+
5
(
4
x
−
3
)
=
8
x
2
−
6
x
+
20
x
−
15
=
8
x
2
+
14
x
−
15
Obtain the product of:
r
n
,
−
m
n
,
m
n
p
Report Question
0%
−
m
3
n
3
p
0%
−
m
2
n
2
p
0%
m
2
n
2
p
0%
−
m
3
n
2
p
Explanation
product of
rn,mn,mnp
r
n
×
−
m
n
×
m
n
p
=
(
1
×
−
1
×
1
)
×
(
r
×
m
×
m
×
n
×
n
×
n
×
p
)
=
−
1
×
r
×
m
2
×
n
3
×
p
=
−
r
m
2
n
3
p
Using identities, evaluate
8.9
2
.
Report Question
0%
74.53
0%
73.42
0%
79.21
0%
73.21
Explanation
Given,
8.9
2
=
(
9
−
0.1
)
2
.
We know,
(
a
−
b
)
2
=
a
2
−
2
a
b
+
b
2
.
Then,
8.9
2
=
(
9
−
0.1
)
2
=
(
9
)
2
−
2
(
9
)
(
0.1
)
+
(
0.1
)
2
=
81
−
1.8
+
0.01
=
79.20
+
0.01
=
79.21
.
Therefore, option
C
is correct.
Obtain the volume of rectangular boxes with the following length, breadth and height respectively.
a
,
2
b
,
3
c
Report Question
0%
6
a
b
c
0%
3
a
b
0%
2
a
b
c
0%
9
a
c
Explanation
volume of rectangular box= length
×
breadth
×
height
volume =
a
×
2
b
×
3
c
=
(
1
×
2
×
3
)
×
(
a
×
b
×
c
)
=
6
a
b
c
Obtain the product of
x
y
,
y
z
,
z
x
.
Report Question
0%
x
2
y
2
z
3
0%
x
2
y
2
z
2
0%
2
x
2
y
2
z
2
0%
2
x
2
y
2
z
3
Explanation
product of
xy, yz, zx is
x
y
×
y
z
×
z
x
=
x
×
x
×
y
×
y
×
z
×
z
=
x
1
+
1
×
y
1
+
1
×
z
1
+
1
=
x
2
y
2
z
2
Carry out the multiplication of the expressions in the following pair:
a
2
−
9
,
4
a
Report Question
0%
a
3
−
12
a
0%
4
a
3
−
22
a
0%
a
3
−
16
0%
4
a
3
−
36
a
Explanation
multiplication of
a
2
−
9
,
4
a
=
(
a
2
−
9
)
×
4
a
=
a
2
×
4
a
−
9
×
4
a
4
a
3
−
36
a
Obtain the volume of rectangular boxes with the following length, breadth and height respectively.
5
a
,
3
a
2
,
7
a
4
Report Question
0%
102
a
7
0%
105
a
7
0%
192
a
7
0%
606
a
7
Simplify:
(
7
m
−
8
n
)
2
+
(
7
m
+
8
n
)
2
.
Report Question
0%
49
m
2
+
164
n
2
0%
98
m
2
+
128
n
2
0%
49
m
2
+
64
n
2
0%
128
m
2
+
64
n
2
Explanation
Given,
(
7
m
−
8
n
)
2
+
(
7
m
+
8
n
)
2
.
We know,
(
a
−
b
)
2
=
a
2
−
2
a
b
+
b
2
and
(
a
+
b
)
2
=
a
2
+
2
a
b
+
b
2
.
Then,
(
7
m
−
8
n
)
2
+
(
7
m
+
8
n
)
2
=
(
(
7
m
)
2
−
2
(
7
m
)
(
8
n
)
+
(
8
n
)
2
)
+
(
(
7
m
)
2
+
2
(
7
m
)
(
8
n
)
+
(
8
n
)
2
)
=
(
49
m
2
−
112
m
n
+
64
n
2
)
+
(
49
m
2
+
112
m
n
+
64
n
2
)
=
49
m
2
−
112
m
n
+
64
n
2
+
49
m
2
+
112
m
+
64
n
2
=
98
m
2
+
128
n
2
.
Therefore, option
B
is correct.
Using identities, evaluate
5.2
2
.
Report Question
0%
26.04
0%
2704
0%
27.04
0%
2604
Explanation
Given,
(
5.2
)
2
We know,
(
a
+
b
)
2
=
a
2
+
b
2
+
2
a
b
.
Then,
(
5.2
)
2
=
(
5
+
0.2
)
2
=
5
2
+
(
0.2
)
2
+
2
(
5
)
(
0.2
)
=
25
+
0.04
+
2
(
1
)
=
25
+
0.04
+
2
=
27.04
.
Therefore, option
C
is correct.
The product of (x -y) and (y -x) is equal to
Report Question
0%
x
2
+
y
2
−
2
x
y
0%
2
x
y
+
x
2
+
y
2
0%
2
x
y
−
x
2
−
y
2
0%
x
2
−
2
x
y
+
y
2
Explanation
(
x
−
y
)
(
y
−
x
)
=
x
(
y
−
x
)
−
y
(
y
−
x
)
=
x
y
−
x
2
−
y
2
+
y
x
=
2
x
y
−
x
2
−
y
2
The product of (2x + 3) and (3x + 2) is equal to
Report Question
0%
6
x
2
+
6
0%
6
x
2
+
5
x
+
6
0%
6
(
x
2
+
x
+
1
)
0%
6
x
2
+
13
x
+
6
Explanation
(
2
x
+
3
)
(
3
x
+
2
)
=
2
x
(
3
x
+
2
)
+
3
(
3
x
+
2
)
=
6
x
2
+
4
x
+
9
x
+
6
=
6
x
2
+
13
x
+
6
Using
(
x
+
a
)
(
x
+
b
)
=
x
2
+
(
a
+
b
)
x
+
a
b
, find
5.1
×
5.2
.
Report Question
0%
17.61
0%
22.41
0%
13.32
0%
26.52
Explanation
Given,
5.1
×
5.2
=
(
5
+
0.1
)
(
5
+
0.2
)
.
We know,
(
x
+
a
)
(
x
+
b
)
=
x
2
+
(
a
+
b
)
x
+
a
b
.
Then,
5.1
×
5.2
=
(
5
+
0.1
)
(
5
+
0.2
)
=
(
5
)
2
+
(
0.1
+
0.2
)
(
5
)
+
(
0.1
)
(
0.2
)
=
25
+
(
0.3
)
(
5
)
+
0.02
=
25
+
1.5
+
0.02
=
26.52
.
Therefore, option
D
is correct.
Using identities, evaluate
12.1
2
−
7.9
2
.
Report Question
0%
84
0%
72
0%
69
0%
87
Explanation
Given,
(
12.1
)
2
−
(
7.9
)
2
.
We know,
(
a
2
−
b
2
)
=
(
a
+
b
)
(
a
−
b
)
.
Then,
(
12.1
)
2
−
(
7.9
)
2
=
(
12.1
+
7.9
)
(
12.1
−
7.9
)
=
20
×
4.2
=
84
.
Therefore, option
A
is correct.
The value of
(
x
+
3
y
)
2
+
(
x
−
3
y
)
2
is:
Report Question
0%
2
x
2
+
18
y
2
0%
2
x
2
−
18
y
2
0%
2
x
2
+
18
y
2
−
2
x
y
0%
None of these
Explanation
We know,
(
a
+
b
)
2
=
a
2
+
2
a
b
+
b
2
and
(
a
−
b
)
2
=
a
2
−
2
a
b
+
b
2
.
Then,
(
x
+
3
y
)
2
+
(
x
−
3
y
)
2
=
[
(
x
)
2
+
(
3
y
)
2
+
2
×
x
×
3
y
]
+
[
(
x
)
2
+
(
3
y
)
2
−
2
×
x
×
3
y
]
=
x
2
+
9
y
2
+
6
x
y
+
x
2
+
9
y
2
−
6
x
y
=
2
x
2
+
18
y
2
.
Hence, Option
A
is correct.
Using
(
x
+
a
)
(
x
+
b
)
=
x
2
+
(
a
+
b
)
x
+
a
b
, find
103
×
104
.
Report Question
0%
14982
0%
11992
0%
10712
0%
11482
Explanation
Given,
103
×
104
=
(
100
+
3
)
(
100
+
4
)
.
Using,
(
x
+
a
)
(
x
+
b
)
=
x
2
+
(
a
+
b
)
x
+
a
b
.
Then,
103
×
104
=
(
100
+
3
)
(
100
+
4
)
=
(
100
)
2
+
(
3
+
4
)
(
100
)
+
(
3
)
(
4
)
=
(
100
)
2
+
(
7
)
(
100
)
+
12
=
10000
+
700
+
12
=
10712
.
Therefore, option
C
is correct.
Simplify:
(
x
+
5
)
(
x
+
4
)
Report Question
0%
x
2
+
27
x
+
20
0%
x
2
+
9
x
+
20
0%
x
2
+
18
x
+
20
0%
x
2
+
x
+
20
Explanation
(
x
+
5
)
(
x
+
4
)
, using the formula
(
x
+
a
)
(
x
+
b
)
=
x
2
+
x
(
a
+
b
)
+
a
b
=
x
2
+
x
(
5
+
4
)
+
5
×
4
=
x
2
+
9
x
+
20
(
x
+
2
)
(
x
+
3
)
−
(
x
+
3
)
(
x
−
2
)
=
Report Question
0%
12
0%
0
0%
6x
0%
4x+12
Explanation
Step 1: Multiply the factors by distribution law
(
x
+
2
)
(
x
+
3
)
−
(
x
+
3
)
(
x
−
2
)
⇒
x
(
x
+
3
)
+
2
(
x
+
3
)
−
(
x
(
x
−
2
)
+
3
(
x
−
2
)
)
⇒
x
2
+
3
x
+
2
x
+
6
−
(
x
2
−
2
x
+
3
x
−
6
)
⇒
x
2
+
3
x
+
2
x
+
6
−
x
2
+
2
x
−
3
x
+
6
[multiplying with
(-)
will change the sign]
⇒
x
2
+
5
x
+
6
−
x
2
−
x
+
6
⇒
4
x
+
12
Hence, Option D is correct
Find the product of
(
3
x
−
5
)
and
(
x
+
5
)
.
Report Question
0%
x
2
−
25
x
+
10
0%
x
2
+
10
x
−
22
0%
3
x
2
+
10
x
−
25
0%
3
x
2
−
22
x
−
25
Explanation
Product of
(
3
x
−
5
)
(
x
+
5
)
=
3
x
(
x
+
5
)
−
5
(
x
+
5
)
=
3
x
2
+
15
x
−
5
x
−
25
=
3
x
2
+
10
x
−
25
Option C is correct.
(
a
−
b
)
2
−
(
a
+
b
)
2
is equal to:
Report Question
0%
2
a
b
0%
4
a
b
0%
6
a
b
0%
−
4
a
b
Explanation
Given,
(
a
−
b
)
2
−
(
a
+
b
)
2
.
We know,
(
x
+
y
)
2
=
x
2
+
2
x
y
+
y
2
and
(
x
−
y
)
2
=
x
2
−
2
x
y
+
y
2
.
Then,
(
a
−
b
)
2
−
(
a
+
b
)
2
=
(
a
2
+
b
2
−
2
a
b
)
−
(
a
2
+
b
2
+
2
a
b
)
=
a
2
+
b
2
−
2
a
b
−
a
2
−
b
2
−
2
a
b
)
=
−
4
a
b
.
Therefore, option
D
is correct.
(
3
x
+
2
y
)
(
x
+
y
)
Report Question
0%
3
x
2
+
y
2
+
5
x
y
0%
3
x
2
+
2
y
2
+
5
x
y
0%
3
x
2
+
2
y
2
+
6
x
y
0%
3
x
2
+
2
y
+
5
x
y
Explanation
=
(
3
x
+
2
y
)
(
x
+
y
)
=
3
x
×
x
+
2
y
×
y
+
3
x
×
y
+
2
y
×
x
=
3
x
2
+
2
y
2
+
5
x
y
The product of a monomial and a trinomial is a
Report Question
0%
monomial
0%
binomial
0%
trinomial
0%
none of these
Explanation
The product of a monomial and trinomial results trinomial.
For example: Suppose a monomial
2
x
and a trinomial
2
x
+
3
y
+
3
.
Their product will be
2
x
(
2
x
+
3
y
+
3
)
=
4
x
2
+
6
x
y
+
6
x
The result is a trinomial.
Hence, option C is correct.
Find the value of
1.03
2
using identity.
Report Question
0%
1.0409
0%
1.0609
0%
1.0009
0%
1.0309
Explanation
Given,
1.03
2
=
(
1
+
0.03
)
2
.
We know,
(
a
+
b
)
2
=
a
2
+
2
a
b
+
b
2
.
Then,
1.03
2
=
(
1
+
0.03
)
2
=
1
2
+
(
0.03
)
2
+
2
×
1
×
0.03
=
1
+
0.0009
+
0.06
=
1.0609
.
Therefore, option
B
is correct.
3
x
×
(
4
x
+
2
)
Report Question
0%
12
x
2
+
6
x
0%
6
(
2
x
2
+
x
)
0%
x
(
12
x
+
6
)
0%
All of the above
Explanation
3
x
×
(
4
x
+
2
)
=
12
x
2
+
6
x
Hence option A is correct.
3
x
×
(
4
x
+
2
)
=
3
x
×
2
(
2
x
+
1
)
=
6
(
2
x
2
+
x
)
Hence option B is correct.
3
x
×
(
4
x
+
2
)
=
12
x
2
+
6
x
=
x
(
12
x
+
6
)
Hence option C is correct.
(
4
x
+
1
)
(
4
x
−
1
)
=
Report Question
0%
16
x
2
+
8
x
+
2
0%
16
x
2
+
8
x
+
1
0%
16
x
2
−
1
0%
16
x
2
+
1
Explanation
Given that:
(
4
x
+
1
)
×
(
4
x
−
1
)
We can see that:
(
4
x
+
1
)
×
(
4
x
−
1
)
=
4
x
×
(
4
x
−
1
)
+
1
×
(
4
x
−
1
)
⇒
(
4
x
×
4
x
)
−
(
4
x
×
1
)
+
(
1
×
4
x
)
−
(
1
×
1
)
⇒
16
x
2
−
4
x
+
4
x
−
1
⇒
16
x
2
−
1
−
2
x
×
10
y
×
−
3
z
=
Report Question
0%
−
60
x
y
z
0%
60
x
z
0%
−
60
x
z
0%
60
x
y
z
Explanation
−
2
x
×
10
y
×
−
3
z
=
−
2
×
10
×
−
3
×
x
×
y
×
z
=
60
x
y
z
−
8
y
z
×
−
2
x
y
=
Report Question
0%
16
x
y
z
0%
−
16
x
y
2
z
0%
16
x
y
2
z
0%
−
16
x
2
y
2
z
2
Explanation
−
8
y
z
×
−
2
x
y
=
(
−
8
×
−
2
)
×
y
z
×
x
y
=
16
×
y
2
z
x
=
16
x
y
2
z
2
x
y
×
7
y
z
×
9
x
z
Report Question
0%
126
x
y
z
0%
126
x
2
y
2
z
2
0%
126
x
y
z
2
0%
126
x
2
y
z
2
Explanation
2
x
y
×
7
y
z
×
9
x
z
=
(
2
×
7
×
9
)
×
x
y
×
y
x
×
x
z
=
126
x
2
y
2
z
2
Find the product of
x
2
y
z
×
x
y
2
z
3
.
Report Question
0%
x
3
y
3
z
4
0%
x
3
y
3
z
3
0%
x
3
y
4
z
3
0%
x
3
y
3
z
Explanation
x
2
y
z
×
x
y
2
z
3
=
x
2
×
y
×
z
×
x
×
y
2
×
z
3
x
2
×
x
×
y
×
y
2
×
z
×
z
3
=
x
3
y
3
z
4
0:0:4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 8 Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page