Loading [MathJax]/jax/output/CommonHTML/jax.js
MCQExams
0:0:2
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 8 Maths Algebraic Expressions And Identities Quiz 7 - MCQExams.com
CBSE
Class 8 Maths
Algebraic Expressions And Identities
Quiz 7
Find the product
(
a
+
b
)
(
a
−
2
b
)
, when
a
=
1
,
b
=
2
.
Report Question
0%
8
0%
10
0%
9
0%
−
9
Explanation
=
(
a
+
b
)
(
a
−
2
b
)
=
a
×
a
+
b
×
(
−
2
b
)
+
b
×
a
+
a
×
(
−
2
b
)
=
a
2
−
2
b
2
−
a
b
a
=
1
,
b
=
2
=
1
−
2
×
2
2
−
1
×
2
=
−
9
(
4
x
+
1
)
×
(
4
x
+
1
)
=
Report Question
0%
16
x
2
+
8
x
+
2
0%
16
x
2
+
8
x
+
1
0%
16
x
2
+
8
x
+
3
0%
None of the above
Explanation
Given that:
(
4
x
+
1
)
×
(
4
x
+
1
)
No we can see that:
(
4
x
+
1
)
×
(
4
x
+
1
)
=
4
x
×
(
4
x
+
1
)
+
1
×
(
4
x
+
1
)
⇒
(
4
x
×
4
x
)
+
(
4
x
×
1
)
+
(
1
×
4
x
)
+
(
1
×
1
)
⇒
16
x
2
+
4
x
+
4
x
+
1
⇒
16
x
2
+
8
x
+
1
Find the product
(
x
+
4
)
(
x
2
+
2
x
+
1
)
Report Question
0%
x
3
+
4
x
2
+
9
x
+
4
0%
x
3
+
6
x
2
+
9
x
+
4
0%
x
3
+
4
x
2
+
8
x
+
4
0%
x
3
+
6
x
2
+
8
x
+
4
Explanation
(
x
+
4
)
(
x
2
+
2
x
+
1
)
=
x
×
(
x
2
+
2
x
+
1
)
+
4
(
x
2
+
2
x
+
1
)
=
x
3
+
2
x
2
+
x
+
4
x
2
+
8
x
+
4
=
x
3
+
6
x
2
+
9
x
+
4
Find the value of
99
×
101
using standard identity.
Report Question
0%
9999
0%
9989
0%
9979
0%
1009
Explanation
Given,
99
×
101
=
(
100
−
1
)
(
100
+
1
)
.
We know,
(
a
+
b
)
(
a
−
b
)
=
a
2
−
b
2
.
Then,
99
×
101
=
(
100
−
1
)
(
100
+
1
)
=
(
100
)
2
−
1
2
=
10000
−
1
=
9999
.
Therefore, option
A
is correct.
Using standard identity, find the value of
102
2
.
Report Question
0%
10402
0%
10408
0%
10204
0%
10404
Explanation
Given,
102
2
=
(
100
+
2
)
2
.
We know,
(
a
+
b
)
2
=
a
2
+
2
a
b
+
b
2
.
Then,
102
2
=
(
100
+
2
)
2
=
100
2
+
2
2
+
2
(
2
)
(
100
)
=
10000
+
4
+
400
=
10404
.
Therefore, option
D
is correct.
Using standard identity, find
(
2
x
−
y
)
2
.
Report Question
0%
4
x
2
+
y
2
−
4
x
y
0%
4
x
2
+
y
2
+
4
x
y
0%
2
x
2
+
y
2
−
4
x
y
0%
4
x
2
+
y
2
−
2
x
y
Explanation
Given,
(
2
x
−
y
)
2
We know,
(
a
−
b
)
2
=
a
2
−
2
a
b
+
b
2
.
Then,
(
2
x
−
y
)
2
=
(
2
x
)
2
+
y
2
−
2
×
2
x
×
y
=
4
x
2
+
y
2
−
4
x
y
.
Therefore, option
A
is correct.
Find the product
x
2
×
(
2
x
+
4
x
y
+
6
z
)
.
Report Question
0%
2
x
2
+
4
x
2
y
+
3
x
z
0%
624
x
2
y
+
3
x
z
0%
2
x
2
+
2
x
2
y
+
6
x
z
0%
x
2
+
2
x
2
y
+
3
x
z
Explanation
x
2
×
(
2
x
+
4
x
y
+
6
x
)
=
x
2
×
2
x
+
x
2
×
4
x
y
+
x
2
×
6
z
=
x
2
+
2
x
2
y
+
3
x
z
Find the product
12
m
×
(
n
+
2
p
+
3
m
)
.
Report Question
0%
36
m
2
+
12
m
n
+
12
m
p
0%
36
m
2
+
12
m
n
+
24
m
p
0%
36
m
2
+
m
n
+
m
p
0%
m
2
+
12
m
n
+
24
m
p
Explanation
12
m
(
n
+
2
p
+
3
m
)
=
12
m
×
n
+
12
m
×
2
p
+
12
m
×
3
m
=
12
m
n
+
24
m
p
+
36
m
2
Using standard identity, find the value of
(
a
+
2
b
)
2
.
Report Question
0%
a
2
+
2
b
2
+
4
a
b
0%
a
2
+
4
b
2
+
2
a
b
0%
a
2
+
4
b
2
+
4
a
b
0%
2
a
2
+
4
b
2
+
4
a
b
Explanation
Given,
(
a
+
2
b
)
2
.
We know,
(
x
+
y
)
2
=
x
2
+
2
x
y
+
y
2
.
Then,
(
a
+
2
b
)
2
=
a
2
+
(
2
b
)
2
+
2
×
a
×
2
b
=
a
2
+
4
b
2
+
4
a
b
.
Therefore, option
C
is correct.
2
x
2
y
×
(
x
2
y
2
z
+
x
y
z
)
Report Question
0%
2
x
4
y
3
z
+
2
x
3
y
2
z
0%
2
x
5
y
3
z
+
2
x
3
y
2
0%
2
x
5
y
3
z
+
2
x
4
y
2
0%
x
5
y
3
z
+
2
x
4
y
2
z
Explanation
2
x
2
y
×
(
x
2
y
2
z
+
x
y
z
)
=
2
x
4
y
3
z
+
2
x
3
y
2
z
Multiply
(
(
2
5
x
+
y
)
(
x
+
3
5
y
)
)
Report Question
0%
2
5
x
2
+
3
5
y
2
0%
2
5
x
2
+
3
5
y
2
+
3
5
x
y
0%
2
5
x
2
+
3
5
y
2
+
31
25
x
y
0%
2
5
x
2
+
3
5
y
2
+
x
y
5
Explanation
(
(
2
5
x
+
y
)
(
x
+
3
5
y
)
=
2
5
x
2
+
6
25
x
y
+
x
y
+
3
5
x
2
=
2
5
x
2
+
31
25
x
y
+
3
5
y
2
Find the value of
2
p
(
p
+
q
)
−
2
p
(
p
−
q
)
Report Question
0%
4
p
2
0%
4
q
2
0%
2
p
q
0%
4
p
q
Explanation
2
p
(
p
+
q
)
−
2
p
(
p
−
q
)
=
2
p
2
+
2
p
q
−
2
p
2
+
2
p
q
=
4
p
q
Using standard identity, find the value of
99
2
.
Report Question
0%
9901
0%
9801
0%
1001
0%
9701
Explanation
Given,
=
99
2
=
(
100
−
1
)
2
We know,
(
a
−
b
)
2
=
a
2
−
2
a
b
+
b
2
Then,
99
2
=
(
100
−
1
)
2
=
100
2
+
1
2
−
2
×
100
×
1
=
10000
+
1
−
200
=
10001
−
200
=
9801
Therefore, option
B
is correct.
Which of the following is correct?
Report Question
0%
(
x
−
y
)
2
=
x
2
+
2
x
y
−
y
2
0%
(
x
−
y
)
2
=
x
2
−
2
x
y
+
y
2
0%
(
x
−
y
)
2
=
x
2
−
y
2
0%
(
x
+
y
)
2
=
x
2
+
2
x
y
−
y
2
Explanation
We know,
(
a
−
b
)
2
=
a
2
−
2
a
b
+
b
2
.
Then,
(
x
−
y
)
2
=
x
2
−
2
(
x
)
(
y
)
+
y
2
=
x
2
−
2
x
y
+
y
2
.
To verify this, let us consider:
(
x
−
y
)
2
=
(
x
−
y
)
(
x
−
y
)
=
x
(
x
−
y
)
−
y
(
x
−
y
)
=
x
2
−
x
y
−
y
x
+
y
2
=
x
2
−
x
y
−
x
y
+
y
2
=
x
2
−
2
x
y
+
y
2
.
Hence,
(
x
−
y
)
2
=
x
2
−
2
x
y
+
y
2
Therefore, option
B
is correct.
Find the value of
49
2
using standard identity.
Report Question
0%
2391
0%
2401
0%
2411
0%
2421
Explanation
As we know that,
(
a
−
b
)
2
=
a
2
−
2
a
b
+
b
2
Substitute
50
for
a
and
1
for
b
in above formula,
(
50
−
1
)
2
=
50
2
−
2
×
50
×
1
+
1
2
49
2
=
2500
−
100
+
1
=
2401
Therefore,
B
is correct.
Square of
3
a
−
4
b
is:
Report Question
0%
9
a
2
+
16
b
2
−
24
a
b
0%
6
a
2
−
8
b
2
0%
9
a
2
−
16
b
2
0%
9
a
2
+
16
b
2
+
24
a
b
Explanation
Given, square of
3
a
−
4
b
i.e.
(
3
a
−
4
b
)
2
.
We know,
(
a
−
b
)
2
=
a
2
−
2
a
b
+
b
2
.
Then,
(
3
a
−
4
b
)
2
=
(
3
a
)
2
−
2
(
3
a
)
(
4
b
)
+
(
4
b
)
2
=
9
a
2
−
24
a
b
+
16
b
2
.
Therefore, option
A
is correct.
Find the value of
47
×
53
.
Report Question
0%
2451
0%
2471
0%
2491
0%
2501
Explanation
Given,
47
×
53
=
(
50
−
3
)
(
50
+
3
)
.
We know,
(
a
+
b
)
(
a
−
b
)
=
a
2
−
b
2
.
Then,
47
×
53
=
(
50
−
3
)
(
50
+
3
)
=
(
50
)
2
−
3
2
=
2500
−
9
=
2491
.
Therefore, option
C
is correct.
Find the value of
87
2
−
13
2
.
Report Question
0%
7300
0%
7350
0%
7400
0%
7450
Explanation
Given,
87
2
−
13
2
.
We know,
a
2
−
b
2
=
(
a
+
b
)
(
a
−
b
)
.
Then,
=
87
2
−
13
2
=
(
87
+
13
)
(
87
−
13
)
=
100
×
74
=
7400
.
Therefore, option
C
is correct.
Product of the following monomials
4
x
,
−
5
y
3
,
6
x
y
is
Report Question
0%
120
x
2
y
2
0%
120
x
y
4
0%
−
120
x
2
y
4
0%
−
120
x
2
y
3
Explanation
4
x
×
(
−
5
y
3
)
×
(
6
x
y
)
=
(
−
20
x
y
3
)
×
(
6
x
y
)
=
−
120
x
2
y
4
Product of
6
a
2
−
7
b
+
5
a
b
and
2
a
b
is
Report Question
0%
12
a
3
b
−
14
a
b
2
+
10
a
b
0%
12
a
3
b
−
14
a
b
2
+
10
a
2
b
2
0%
6
a
2
−
7
b
+
7
a
b
0%
12
a
2
b
−
7
a
b
+
10
a
b
Explanation
2
a
b
(
6
a
2
−
7
b
+
5
a
b
)
=
2
a
b
×
6
a
2
−
2
a
b
×
7
b
+
2
a
b
×
5
a
b
=
12
a
3
b
−
14
a
b
2
+
10
a
2
b
2
Find the value of
52
2
using standard identity.
Report Question
0%
2604
0%
2704
0%
2804
0%
2904
Explanation
Given,
52
2
=
(
50
+
2
)
2
.
We know,
(
a
+
b
)
2
=
a
2
+
b
2
+
2
a
b
.
Then,
52
2
=
(
50
+
2
)
2
=
50
2
+
2
2
+
2
×
50
×
2
=
2500
+
4
+
200
=
2704
.
Therefore, option
B
is correct.
Find the value of
m
n
×
n
p
×
m
p
×
m
n
p
Report Question
0%
m
2
n
2
p
2
0%
m
n
p
0%
m
3
n
3
p
3
0%
1
Explanation
We know
a
n
×
a
m
=
a
(
m
+
n
)
]
Hence
m
n
×
n
p
×
p
m
×
m
n
p
=
m
(
1
+
1
+
1
)
×
n
(
1
+
1
+
1
)
×
p
(
1
+
1
+
1
)
=
m
3
n
3
p
3
Find the value of
995
2
−
5
2
.
Report Question
0%
99000
0%
9900
0%
99005
0%
990000
Explanation
Given,
995
2
−
5
2
.
We know,
a
2
−
b
2
=
(
a
+
b
)
(
a
−
b
)
.
Then,
995
2
−
5
2
=
(
995
+
5
)
(
995
−
5
)
=
1000
×
990
=
990000
.
Therefore, option
D
is correct.
Find the value of
3
p
(
p
2
+
q
2
)
at
p
=
0
,
q
=
1
Report Question
0%
0
0%
1
0%
3
0%
5
Explanation
We need to find value of
3
p
(
p
2
+
q
2
)
at
p
=
0
,
q
=
1
Therefore,
3
p
(
p
2
+
q
2
)
=
3
p
3
+
3
p
q
2
Now, on substituting values of
p
and
q
, we get
3
p
2
+
3
p
q
2
=
3
(
0
)
2
+
3
(
0
)
(
1
)
2
=
0
+
0
=
0
The value of
(
a
+
b
)
2
−
2
(
a
−
b
)
2
+
(
a
−
b
)
(
a
+
b
)
is:
Report Question
0%
4
a
b
−
b
2
0%
2
a
b
−
b
2
0%
3
a
b
−
b
2
0%
6
a
b
−
2
b
2
Explanation
Given,
(
a
+
b
)
2
−
2
(
a
−
b
)
2
+
(
a
−
b
)
(
a
+
b
)
.
We know,
(
a
+
b
)
2
=
a
2
+
2
a
b
+
b
2
,
(
a
−
b
)
2
=
a
2
−
2
a
b
+
b
2
and
(
a
+
b
)
(
a
−
b
)
=
a
2
−
b
2
.
Then,
(
a
+
b
)
2
−
2
(
a
−
b
)
2
+
(
a
−
b
)
(
a
+
b
)
=
(
a
2
+
b
2
+
2
a
b
)
−
2
(
a
2
+
b
2
−
2
a
b
)
+
(
a
2
−
b
2
)
=
a
2
+
b
2
+
2
a
b
−
2
a
2
−
2
b
2
+
4
a
b
+
a
2
−
b
2
=
2
a
2
+
b
2
+
6
a
b
−
2
a
2
−
3
b
2
=
6
a
b
−
2
b
2
.
Therefore, option
D
is correct.
Find the value of
1.05
×
0.95
using standard identity.
Report Question
0%
0.9985
0%
0.9975
0%
0.9875
0%
0.9995
Explanation
Given,
1.05
×
0.95
=
(
1
+
0.05
)
(
1
−
0.05
)
.
We know,
(
a
+
b
)
(
a
−
b
)
=
a
2
−
b
2
.
Then,
1.05
×
0.95
=
(
1
+
0.05
)
(
1
−
0.05
)
=
1
2
−
(
0.05
)
2
=
1
−
0.0025
=
0.9975
.
Therefore, option
B
is correct.
Find the value of
199
×
201
.
Report Question
0%
39989
0%
40001
0%
39999
0%
400011
Explanation
Given,
199
×
201
=
(
200
−
1
)
(
200
+
1
)
.
We know,
a
2
−
b
2
=
(
a
−
b
)
(
a
+
b
)
.
Then,
199
×
201
=
(
200
−
1
)
(
200
+
1
)
=
200
2
−
1
2
=
40000
−
1
=
39999
.
Therefore, option
C
is correct.
Find the value of
(
−
2
x
2
)
×
(
−
3
y
2
)
×
(
−
6
z
2
)
.
Report Question
0%
−
36
x
y
z
0%
36
x
y
z
0%
−
36
x
2
y
2
z
0%
−
36
x
2
y
2
z
2
Explanation
−
2
x
2
×
−
3
y
2
×
−
6
z
2
=
−
2
×
−
3
×
−
6
×
x
2
×
y
2
×
z
2
=
−
36
x
2
y
2
z
2
Find the value of
(
a
+
b
)
2
−
(
a
−
b
)
2
.
Report Question
0%
a
b
0%
2
a
b
0%
3
a
b
0%
4
a
b
Explanation
Given,
(
a
+
b
)
2
−
(
a
−
b
)
2
.
We know,
(
a
+
b
)
2
=
a
2
+
b
2
+
2
a
b
and
(
a
−
b
)
2
a
2
+
b
2
−
2
a
b
.
Then,
(
a
+
b
)
2
−
(
a
−
b
)
2
=
a
2
+
b
2
+
2
a
b
−
(
a
2
+
b
2
−
2
a
b
)
=
a
2
+
b
2
+
2
a
b
−
a
2
−
b
2
+
2
a
b
=
4
a
b
.
Therefore, option
D
is correct.
Find the value of
(
a
−
b
)
(
a
+
b
)
+
(
b
−
c
)
(
b
+
c
)
+
(
c
−
a
)
(
c
+
a
)
.
Report Question
0%
a
b
c
0%
a
2
+
b
2
+
c
2
0%
0
0%
1
Explanation
We know,
(
a
−
b
)
(
a
+
b
)
=
a
2
−
b
2
.
∴
(
a
−
b
)
(
a
+
b
)
+
(
b
−
c
)
(
b
+
c
)
+
(
c
−
a
)
(
c
+
a
)
=
(
a
2
−
b
2
)
+
(
b
2
−
c
2
)
+
(
c
2
−
a
2
)
=
a
2
−
b
2
+
b
2
−
c
2
+
c
2
−
a
2
=
0
.
Therefore, option
C
is correct.
0:0:2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 8 Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page