Loading [MathJax]/jax/output/CommonHTML/jax.js
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 8 Maths Algebraic Expressions And Identities Quiz 8 - MCQExams.com
CBSE
Class 8 Maths
Algebraic Expressions And Identities
Quiz 8
Simplify:
m
8
p
7
r
12
m
3
r
9
p
×
p
2
r
3
m
4
Report Question
0%
m
5
p
8
r
3
0%
m
9
p
8
r
7
0%
m
9
p
7
r
4
0%
m
9
p
8
r
6
Explanation
m
8
p
7
r
12
m
3
r
9
p
×
p
2
r
3
m
4
⇒
m
12
p
9
r
1
5
m
3
r
9
p
1
⇒
m
9
p
8
r
6
(option D)
(
3
−
√
7
)
(
3
+
√
7
)
=
?
Report Question
0%
4
0%
2
0%
6
0%
8
Explanation
Given,
(
3
−
√
7
)
(
3
+
√
7
)
.
We know,
(
x
−
y
)
(
x
+
y
)
=
x
2
−
y
2
.
Thus,
(
3
−
√
7
)
(
3
+
√
7
)
=
3
2
−
(
√
7
)
2
=
9
−
7
=
2
.
Therefore, option
B
is correct.
Evaluate:
−
3
z
2
(
−
4
x
2
+
10
z
4
−
4
x
z
5
)
Report Question
0%
12
x
2
z
2
−
30
z
6
+
12
z
1
0
0%
12
x
2
z
2
−
30
z
8
+
12
z
1
0
0%
12
x
4
−
30
z
6
+
12
z
7
0%
12
x
2
z
2
−
30
z
6
+
12
x
z
7
Explanation
−
3
z
2
(
−
4
x
2
+
10
z
4
−
4
x
z
5
)
Multiply each term of the parenthesis by the monomial keeping the addition or subtraction sign same.
=
−
3
z
2
.
(
−
4
x
2
)
+
−
3
z
2
.10
z
4
−
(
−
3
z
2
)
.4
x
z
5
=
12
x
2
z
2
−
30
z
6
+
12
x
z
7
Using binomial identities, expand the following expression
(
t
+
3
)
2
Report Question
0%
t
2
−
6
t
−
9
0%
t
2
+
6
t
−
9
0%
t
2
+
6
t
+
9
0%
t
2
−
6
t
+
9
Explanation
We need to expand
(
t
+
3
)
2
We know that binomial identities for
(
a
+
b
)
2
=
a
2
+
2
a
b
+
b
2
So,
a
=
t
,
b
=
3
=
t
2
+
2
×
3
t
+
3
2
=
t
2
+
6
t
+
9
Find the value of
(
2
x
+
5
)
(
2
x
−
5
)
.
Report Question
0%
4
x
−
25
0%
4
x
2
−
25
0%
2
x
2
−
25
0%
4
x
2
−
5
Explanation
We know that binomial identities for
(
x
+
y
)
(
x
−
y
)
=
x
2
−
y
2
∴
(
2
x
+
5
)
(
2
x
−
5
)
=
(
2
x
)
2
−
5
2
=
4
x
2
−
25
Multiply:
6
x
5
(
−
3
x
4
−
2
x
3
+
x
2
)
Report Question
0%
−
18
x
9
−
12
x
8
+
6
x
7
0%
−
18
x
5
−
12
x
8
+
6
x
7
0%
−
18
x
9
−
12
x
5
+
6
x
7
0%
−
18
x
9
−
12
x
8
+
7
x
7
Explanation
6
x
5
(
−
3
x
4
−
2
x
3
+
x
2
)
Multiply each term of the parenthesis by the monomial keeping the addition or subtraction sign same.
=
6
x
5
.
−
3
x
4
−
6
x
5
.2
x
3
+
6
x
5
.
x
2
=
−
18
x
9
−
12
x
8
+
6
x
7
Simplify the following expression:
(
s
−
r
)
2
−
(
s
+
r
)
2
Report Question
0%
2
s
r
0%
2
s
2
+
2
r
2
0%
−
4
s
r
0%
2
s
2
−
2
r
2
Explanation
We know that binomial identities for
(
x
+
y
)
2
=
x
2
+
2
x
y
+
y
2
and
(
x
−
y
)
2
=
x
2
−
2
x
y
+
y
2
So,
(
s
−
r
)
2
−
(
s
+
r
)
2
=
s
2
−
2
s
r
+
r
2
−
s
2
−
2
s
r
−
r
2
=
−
4
s
r
The value of
−
3
x
(
5
k
2
+
y
)
is
Report Question
0%
−
9
k
2
x
−
3
x
y
0%
−
15
k
2
x
−
3
x
y
0%
−
15
k
3
x
−
3
x
y
0%
−
5
k
2
x
−
3
x
y
Explanation
We need to find value of
−
3
x
(
5
k
2
+
y
)
Multiply
−
3
x
to the inside bracket, we get
=
−
15
k
2
x
−
3
x
y
Multiply:
4
x
2
z
(
3
x
2
y
2
−
4
x
z
)
Report Question
0%
2
x
4
y
2
z
−
16
x
3
z
2
0%
12
x
4
y
2
z
−
16
x
3
z
2
0%
12
x
4
y
z
−
16
x
3
z
2
0%
12
x
4
y
2
z
−
16
x
2
z
2
Explanation
4
x
2
z
(
3
x
2
y
2
−
4
x
z
)
Multiply each term of the parenthesis by the monomial keeping the addition or subtraction sign same.
=
4
x
2
z
.3
x
2
y
2
−
4
x
2
z
.4
x
z
=
12
x
4
y
2
z
−
16
x
3
z
2
Simplify:
7
a
3
(
−
4
a
4
+
6
a
5
)
Report Question
0%
14
a
7
0%
14
a
8
0%
−
28
a
7
+
42
a
8
0%
−
28
a
7
+
42
a
15
Explanation
7
a
3
(
−
4
a
4
+
6
a
5
)
Multiply each term of the parenthesis by the monomial keeping the addition or subtraction sign same.
=
7
a
3
.
−
4
a
4
+
7
a
3
.6
a
5
=
−
28
a
7
+
42
a
8
Reduce the following expression using binomial identities:
(
3
x
+
5
)
(
3
x
+
10
)
.
Report Question
0%
9
x
2
+
45
x
+
50
0%
9
x
2
−
45
x
+
50
0%
9
x
2
+
45
x
−
50
0%
9
x
2
+
45
−
50
Explanation
We know that binomial identities for
(
x
+
y
)
(
x
+
z
)
=
x
2
+
(
y
+
z
)
x
+
y
z
So,
x
=
3
x
,
y
=
5
,
z
=
10
=
(
3
x
)
2
+
(
5
+
10
)
3
x
+
5
×
10
=
9
x
2
+
45
x
+
50
What is the product of
(
x
−
2
x
)
2
?
Report Question
0%
2
x
2
0%
x
−
2
x
2
0%
x
2
0%
8
x
2
Explanation
(
x
−
2
x
)
2
=
(
x
−
2
x
)
(
x
−
2
x
)
=
x
.
x
−
x
.2
x
−
2
x
.
x
+
2
x
.2
x
=
x
2
−
2
x
2
−
2
x
2
+
4
x
2
=
x
2
If
x
◻
y
=
(
x
+
y
)
2
−
(
x
−
y
)
2
. Then
√
4
◻
√
5
=
.
Report Question
0%
0
0%
8
√
5
0%
10
√
5
0%
15
0%
20
The product of
4
a
2
,
−
6
b
2
and
3
a
2
b
2
is
Report Question
0%
a
2
b
2
0%
13
a
4
b
4
0%
−
72
a
4
b
4
0%
a
4
b
4
Explanation
4
a
2
×
(
−
6
b
2
)
×
3
a
2
b
2
=
4
×
a
×
a
×
−
6
×
b
×
b
×
3
×
a
×
a
×
b
×
b
=
4
×
−
6
×
3
×
a
×
a
×
a
×
a
×
b
×
b
×
b
×
b
=
−
72
a
4
b
4
The value of the product
(
4
a
2
+
3
b
)
(
9
b
2
+
4
a
)
at
a
=
1
,
b
=
−
2
is
Report Question
0%
60
0%
−
80
0%
70
0%
−
50
Explanation
(
4
a
2
+
3
b
)
(
9
b
2
+
4
a
)
=
36
a
2
b
2
+
27
b
3
+
16
a
3
+
12
a
b
Put the value of
a
=
1
and
b
=
−
2
, we get
(
4
a
2
+
3
b
)
(
9
b
2
+
4
a
)
=
36
×
(
1
)
2
×
(
−
2
)
2
+
27
×
(
−
2
)
3
+
16
×
(
1
)
3
+
12
×
(
1
)
×
(
−
2
)
=
36
×
4
−
27
×
8
+
16
×
1
−
12
×
2
=
144
−
216
+
16
−
24
=
−
80
The product of the monomials
(
2
x
4
y
)
and
(
3
x
5
y
8
)
is :
Report Question
0%
5
x
9
y
9
0%
6
x
9
y
8
0%
6
x
9
y
9
0%
5
x
20
y
8
0%
6
x
20
y
8
Explanation
The product of monomials
2
x
4
y
and
3
x
5
y
8
is
2
x
4
y
×
3
x
5
y
8
=
2
(
3
)
.
x
4
(
x
5
)
.
y
1
(
y
8
)
⇒
6
x
4
+
5
y
1
+
8
⇒
6
x
9
y
9
Number of terms in the expansion
(
a
+
b
)
(
c
+
d
)
is ________.
Report Question
0%
1
0%
2
0%
3
0%
4
Explanation
given,
(
a
+
b
)
(
c
+
d
)
=
a
c
+
b
c
+
a
d
+
b
d
In above expression the number of terms are Four (4)
Multiply the binomials
(
4
z
+
3
)
and
(
z
−
2
)
:
Report Question
0%
4
z
2
−
5
0%
4
z
2
−
6
0%
4
z
2
−
3
z
−
5
0%
4
z
2
−
5
z
−
6
0%
4
z
2
+
5
z
−
6
Explanation
On multiplying,
(
4
z
+
3
)
(
z
−
2
)
⇒
4
z
(
z
−
2
)
+
3
(
z
−
2
)
⇒
4
z
2
−
8
z
+
3
z
−
6
⇒
4
z
2
−
5
z
−
6
−
4
p
(
3
q
−
5
p
)
=
Report Question
0%
−
12
p
q
−
20
p
2
0%
−
12
p
q
+
20
p
2
0%
−
7
p
q
+
20
p
2
0%
−
7
p
q
−
20
p
2
Explanation
Multiplying
−
4
p
with
(
3
q
−
5
p
)
−
4
p
(
3
q
)
=
−
12
p
q
−
4
p
(
−
5
p
)
=
−
12
p
q
+
20
p
2
What is the product
(
x
+
2
)
(
x
−
3
)
?
Report Question
0%
2
x
−
6
0%
3
x
−
2
0%
x
2
−
x
−
6
0%
x
2
−
6
x
Explanation
(
x
+
a
)
(
x
+
b
)
=
x
2
+
(
a
+
b
)
x
+
a
b
In this formula, taking
x
=
x
a
=
2
b
=
(
−
3
)
(
x
+
2
)
(
x
−
3
)
=
x
2
+
[
(
2
+
(
−
3
)
]
x
+
2
(
−
3
)
⇒
x
2
−
1
x
−
6
⇒
x
2
−
x
−
6
The value of
(
7.2
)
2
is (use an identity to expand):
Report Question
0%
49.9
0%
14.4
0%
51.84
0%
49.04
Explanation
We will use,
(
a
+
b
)
2
=
a
2
+
2
a
b
+
b
2
to find the required result.
Substitute
7
for
a
and
0.2
for
B
in the above identity,
(
7
+
0.2
)
2
=
(
7
)
2
+
2
(
7
)
(
0.2
)
+
(
0.2
)
2
=
49
+
2.8
+
0.04
=
51.84
Hence, option
C
is correct.
The expansion of
(
2
x
−
3
y
)
2
is:
Report Question
0%
2
x
2
+
3
y
2
+
6
x
y
0%
4
x
2
+
9
y
2
−
12
x
y
0%
2
x
2
+
3
y
2
−
6
x
y
0%
4
x
2
+
9
y
2
+
12
x
y
Explanation
Given,
(
2
x
−
3
y
)
2
.
We know,
(
a
−
b
)
2
=
a
2
−
2
a
b
+
b
2
.
Then,
(
2
x
−
3
y
)
2
=
(
2
x
)
2
−
2
(
2
x
)
(
3
y
)
+
(
3
y
)
2
=
4
x
2
−
12
x
y
+
9
y
2
.
Therefore, option
B
is correct.
Which of the following relation is correct.
Report Question
0%
3
(
x
−
9
)
=
3
x
−
27
0%
3
(
x
−
9
)
=
3
x
−
24
0%
3
(
x
−
8
)
=
3
x
−
27
0%
None
Explanation
Let us multiply the given monomial
3
by a binomial
x
−
9
as shown below:
3
(
x
−
9
)
=
(
3
×
x
)
−
(
3
×
9
)
=
3
x
−
27
Hence,
3
(
x
−
9
)
=
3
x
−
27
.
The product of the following monomial:
−
3
a
,
4
a
,
b
,
−
6
c
,
d
is
72
a
2
b
c
d
Report Question
0%
True
0%
False
Explanation
We multiply the given monomials
−
3
a
,
4
a
,
b
,
−
6
c
and
d
as shown below:
(
−
3
a
)
×
4
a
×
b
×
(
−
6
c
)
×
d
=
(
−
3
×
a
)
×
4
a
×
b
×
(
−
6
×
c
)
×
d
=
(
−
3
×
4
×
(
−
6
)
)
×
(
a
×
a
)
×
b
×
c
×
d
=
72
×
a
2
×
b
c
d
=
72
a
2
b
c
d
Hence, the product of
−
3
a
,
4
a
,
b
,
−
6
c
and
d
is
72
a
2
b
c
d
.
(
a
+
b
)
2
−
(
a
−
b
)
2
=
_____.
Report Question
0%
4
a
b
0%
2
a
b
0%
a
2
+
2
a
b
+
b
2
0%
2
(
a
2
+
b
2
)
Explanation
Given,
(
a
+
b
)
2
−
(
a
−
b
)
2
.
We know,
(
a
+
b
)
2
=
(
a
2
+
2
a
b
+
b
2
)
and
(
a
−
b
)
2
=
(
a
2
−
2
a
b
+
b
2
)
.
Then,
(
a
+
b
)
2
−
(
a
−
b
)
2
=
(
a
2
+
2
a
b
+
b
2
)
−
(
a
2
−
2
a
b
+
b
2
)
=
a
2
+
2
a
b
+
b
2
−
a
2
+
2
a
b
−
b
2
=
4
a
b
.
Therefore, the required answer is
4
a
b
.
Hence, option
A
is correct.
If
A
=
x
y
,
B
=
y
z
and
C
=
z
x
then find ABC=
x
2
y
2
z
2
Report Question
0%
True
0%
False
Explanation
We multiply the given binomials
A
=
x
y
,
B
=
y
z
and
C
=
z
x
as shown below:
(
x
y
)
×
(
y
z
)
×
(
z
x
)
=
(
x
×
y
)
×
(
y
×
z
)
×
(
z
×
x
)
=
(
x
×
x
)
×
(
y
×
y
)
×
(
z
×
z
)
=
x
2
×
y
2
×
z
2
=
x
2
y
2
z
2
Hence, the product of
A
=
x
y
,
B
=
y
z
and
C
=
z
x
is
x
2
y
2
z
2
.
On multiplying the binomials:
2
a
−
9
and
3
a
+
4
, we get
6
a
2
−
19
a
−
36
Report Question
0%
True
0%
False
Explanation
We multiply the given binomials
(
2
a
−
9
)
and
(
3
a
+
4
)
as shown below:
(
2
a
−
9
)
(
3
a
+
4
)
=
2
a
(
3
a
+
4
)
−
9
(
3
a
+
4
)
=
6
a
2
+
8
a
−
27
a
−
36
=
6
a
2
+
(
8
a
−
27
a
)
−
36
(
Combining like terms
)
=
6
a
2
+
a
(
8
−
27
)
−
36
=
6
a
2
−
19
a
−
36
Hence,
(
2
a
−
9
)
(
3
a
+
4
)
=
6
a
2
−
19
a
−
36
.
So, the given statement is true.
State whether the statement is True or False.
Product of
(
k
l
+
l
m
)
and
(
k
−
l
)
is equal to
k
2
l
−
k
l
2
+
l
2
m
−
k
l
m
Report Question
0%
True
0%
False
Explanation
Product of
(
k
l
+
l
m
)
and
(
k
−
l
)
is ,
(
k
l
+
l
m
)
×
(
k
−
l
)
=
k
l
(
k
−
l
)
+
l
m
(
k
−
l
)
=
k
2
l
−
k
l
2
+
k
l
m
−
l
2
m
Clearly
k
2
l
−
k
l
2
+
k
l
m
−
l
2
m
≠
k
2
l
−
k
l
2
−
k
l
m
+
l
2
m
Hence, The given statement is false.
Find the product of the following pairs:
−
3
l
,
−
2
m
Report Question
0%
6
l
m
0%
−
6
l
m
0%
4
l
m
0%
None of these
Explanation
We multiply the given monomials
−
3
l
and
−
2
m
as shown below:
(
−
3
l
)
×
(
−
2
m
)
=
(
−
3
×
−
2
)
×
(
l
×
m
)
=
6
×
l
m
=
6
l
m
Hence, the product of
−
3
l
and
−
2
m
is
6
l
m
.
Find the product of the following pairs:
6
,
7
k
Report Question
0%
42
k
0%
21
k
0%
23
k
0%
None of these
Explanation
We multiply the given monomials
6
and
7
k
as shown below:
⇒
6
×
7
k
=
(
6
×
7
)
×
k
=
42
×
k
=
42
k
Hence, the product of
6
and
7
k
is
42
k
.
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 8 Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page