Processing math: 100%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 8 Maths Algebraic Expressions And Identities Quiz 9 - MCQExams.com
CBSE
Class 8 Maths
Algebraic Expressions And Identities
Quiz 9
The product of
(
x
−
1
)
(
2
x
−
3
)
is _____
Report Question
0%
2
x
2
−
5
x
−
3
0%
2
x
2
−
5
x
+
3
0%
2
x
2
+
5
x
−
3
0%
2
x
2
+
5
x
+
3
Explanation
Expanding:
(
x
−
1
)
×
(
2
x
−
3
)
=
2
x
2
−
2
x
−
3
x
+
3
After combining the like terms we get:
=
2
x
2
−
5
x
+
3
Find the product of
(
1
2
x
2
−
1
3
y
2
)
and
(
1
2
x
2
+
1
3
y
2
)
.
Report Question
0%
1
9
y
4
−
1
4
x
4
0%
1
4
x
4
−
1
9
y
4
0%
4
x
2
−
9
y
4
0%
1
4
x
4
+
1
9
y
4
Explanation
Given, product of
(
1
2
x
2
−
1
3
y
2
)
and
(
1
2
x
2
+
1
3
y
2
)
i.e.
(
1
2
x
2
−
1
3
y
2
)
×
(
1
2
x
2
+
1
3
y
2
)
.
We know, the identity
(
a
+
b
)
(
a
−
b
)
=
a
2
−
b
2
.
Then,
(
1
2
x
2
−
1
3
y
2
)
×
(
1
2
x
2
+
1
3
y
2
)
=
(
1
2
x
2
)
2
−
(
1
3
y
2
)
2
=
1
4
x
4
−
1
9
y
4
.
Therefore, option
B
is correct.
The value of
(
−
5
x
2
y
)
×
(
−
2
3
x
y
2
z
)
×
(
8
15
x
y
z
2
)
×
(
−
1
4
z
)
is ______.
Report Question
0%
−
4
9
x
4
y
4
z
4
0%
4
9
x
4
y
4
z
4
0%
−
4
9
x
3
y
3
z
3
0%
4
9
x
3
y
3
z
3
Explanation
We have,
(
−
5
x
2
y
)
×
(
−
2
3
x
y
2
z
)
×
(
8
15
x
y
z
2
)
×
(
−
1
4
z
)
=
(
−
5
×
(
−
2
3
)
×
8
15
×
(
−
1
4
)
)
×
(
x
2
y
×
x
y
2
z
×
x
y
z
2
×
z
)
=
(
−
2
×
2
3
×
3
)
×
(
(
x
2
×
x
×
x
)
×
(
y
×
y
2
×
y
)
×
(
z
×
z
2
×
z
)
)
=
(
−
4
9
)
×
(
x
4
)
×
(
y
4
)
×
(
z
4
)
=
(
−
4
9
)
(
x
4
)
(
y
4
)
(
z
4
)
Answer is A
The value of
(
5
1
2
+
3
1
2
)
(
5
1
2
−
3
1
2
)
is:
Report Question
0%
2
0%
3
0%
5
0%
1
Explanation
Given,
(
5
1
2
+
3
1
2
)
(
5
1
2
−
3
1
2
)
.
We know,
(
a
+
b
)
(
a
−
b
)
=
a
2
−
b
2
.
Then,
(
5
1
2
+
3
1
2
)
(
5
1
2
−
3
1
2
)
=
5
1
2
×
2
−
3
1
2
×
2
=
5
1
−
3
1
=
5
−
3
=
2
.
Hence, option
A
is correct.
Using identities, evaluate:
71
2
.
Report Question
0%
5041
0%
3041
0%
6041
0%
2041
Explanation
Given,
71
2
,
i.e.
71
2
=
(
70
+
1
)
2
.
We know,
(
x
+
y
)
2
=
x
2
+
y
2
+
2
x
y
.
Then,
71
2
=
(
70
+
1
)
2
=
70
2
+
(
2
×
70
×
1
)
+
1
2
=
4900
+
140
+
1
=
5040
+
1
=
5041.
Hence,
71
2
=
5041
.
Therefore, option
A
is correct.
Find the product
24
x
2
(
1
−
2
x
)
and evaluate if for
x
=
2
Report Question
0%
288
0%
384
0%
−
288
0%
−
384
Explanation
Let us multiply the given monomial and binomial as shown below:
24
x
2
(
1
−
2
x
)
=
(
24
x
2
×
1
)
−
(
24
x
2
×
2
x
)
=
24
x
2
−
48
x
3
Now, let us substitute
x
=
2
in
24
x
2
−
48
x
3
as follows:
24
(
2
)
2
−
48
(
2
)
3
=
(
24
×
4
)
−
(
48
×
8
)
=
96
−
384
=
−
288
Hence,
24
x
2
(
1
−
2
x
)
=
−
288
for
x
=
2
.
The value of
(
1.02
)
2
+
(
0.98
)
2
, corrected to three decimal places is:
Report Question
0%
2.001
0%
2.004
0%
2.006
0%
1.995
Explanation
Given,
(
1.02
)
2
+
(
0.98
)
2
.
We know,
(
a
+
b
)
2
=
a
2
+
2
a
b
+
b
2
.
Then,
(
1.02
)
2
+
(
0.98
)
2
=
(
1.02
)
2
+
(
0.98
)
2
+
(
2
×
1.02
×
0.98
)
−
(
2
×
1.02
×
0.98
)
=
(
1.02
+
0.98
)
2
−
1.9992
=
(
2
)
2
−
1.9992
=
4
−
1.9992
=
2.0008
.
When corrected to three decimal digit,
2.0008
=
2.001
.
Therefore, option
A
is correct.
Factorise :
(
a
x
+
b
y
)
2
+
(
2
b
x
−
2
a
y
)
2
−
6
a
b
x
y
Report Question
0%
a
2
x
2
+
b
2
y
2
+
2
b
2
x
2
+
2
a
2
y
2
+
6
a
b
x
y
0%
a
2
x
2
+
b
2
y
2
+
4
b
2
x
2
+
4
a
2
y
2
−
12
a
b
x
y
0%
a
2
x
2
+
b
2
y
2
+
b
2
x
2
+
a
2
y
2
+
4
a
b
x
y
0%
a
2
x
2
+
b
2
y
2
+
4
b
2
x
2
+
4
a
2
y
2
+
6
a
b
x
y
Explanation
(
a
x
+
b
y
)
2
+
(
2
b
x
−
2
a
y
)
2
−
b
a
b
x
y
Here we will use the following identity,
⇒
(
m
+
n
)
2
=
m
2
+
n
2
+
2
m
n
and
(
m
−
n
)
2
=
m
2
+
n
2
−
2
m
n
Using this we have :
=
(
a
x
)
2
+
(
b
y
)
2
+
2
a
x
b
y
+
4
(
b
x
)
2
+
4
(
a
y
)
2
−
8
a
x
b
y
−
6
a
b
x
y
=
a
2
x
2
+
b
2
y
2
+
4
b
2
x
2
+
4
a
2
y
2
−
14
a
x
b
y
+
2
a
x
b
y
=
a
2
x
2
+
b
2
y
2
+
4
b
2
x
2
+
4
a
2
y
2
−
12
a
x
b
y
Hence, the answer is
a
2
x
2
+
b
2
y
2
+
4
b
2
x
2
+
4
a
2
y
2
−
12
a
x
b
y
.
If
x
y
=
20
and
(
x
+
y
)
2
=
70
, then
x
2
+
y
2
is equal to
Report Question
0%
25
0%
35
0%
30
0%
50
Explanation
(
x
+
y
)
2
=
x
2
+
y
2
+
2
x
y
It is given that
(
x
+
y
)
2
=
70
and
x
y
=
20
⇒
70
=
x
2
+
y
2
+
(
2
×
20
)
x
2
+
y
2
=
70
−
40
=
30
The product of
(
7
a
−
8
b
)
and
(
7
a
−
8
b
)
is _______________.
Report Question
0%
14
a
2
−
112
a
b
+
16
b
2
0%
49
a
2
+
112
a
b
+
64
b
2
0%
49
a
2
−
112
a
b
+
64
b
2
0%
49
a
2
−
112
a
b
−
64
b
2
Explanation
We know that
(
x
−
y
)
2
=
x
2
−
2
x
y
+
y
2
So,
(
7
a
−
8
b
)
(
7
a
−
8
b
)
=
(
7
a
)
2
−
2
(
7
a
)
(
8
b
)
+
(
8
b
)
2
=
49
a
2
−
112
a
b
+
64
b
2
Thus, C is the correct answer.
Product of the following monomials
4
p
,
−
7
q
3
,
−
7
p
q
is
Report Question
0%
196
p
2
q
4
0%
196
p
q
4
0%
−
196
p
2
q
4
0%
196
p
2
q
3
Explanation
Given monomials are :
4
p
,
−
7
q
3
,
−
7
p
q
∴
Product
=
(
4
p
)
×
(
−
7
q
3
)
×
(
−
7
p
q
)
=
4
×
(
−
7
)
×
(
−
7
)
×
p
×
q
3
×
p
q
=
196
p
2
q
4
Hence, option (A) is correct.
The value of
(
a
+
b
)
2
+
(
a
−
b
)
2
is
Report Question
0%
2
a
+
2
b
0%
2
a
−
2
b
0%
2
a
2
+
2
b
2
0%
2
a
2
−
2
b
2
Explanation
Step-1: Apply the relevant formula & simplify.
We have,
(
a
+
b
)
2
+
(
a
−
b
)
2
Now,
(
a
+
b
)
2
=
a
2
+
2
a
b
+
b
2
.
.
.
.
.
.
(
i
)
(
a
−
b
)
2
=
a
2
−
2
a
b
+
b
2
.
.
.
.
.
.
(
i
i
)
Step-2: Add the above expressions to get the result
(
a
+
b
)
2
+
(
a
−
b
)
2
a
2
+
2
a
b
+
b
2
+
a
2
−
2
a
b
+
b
2
=
2
a
2
+
2
b
2
Hence, option - C is the answer
State whether the statement is true (T) or false (F).
The product of one negative and one positive term is a negative term.
Report Question
0%
True
0%
False
Explanation
The given statement is true.
The product of one negative and a positive term is always a negative term.
For example,
(
−
2
)
×
3
=
−
6
or,
−
a
×
b
=
−
a
b
What is the product of
(
x
+
2
)
(
x
−
3
)
?
Report Question
0%
2
x
−
6
0%
3
x
−
2
0%
x
2
−
x
−
6
0%
x
2
−
6
x
Explanation
(
x
+
2
)
(
x
−
3
)
x
(
x
−
3
)
+
2
(
x
−
3
)
x
2
−
3
x
+
2
x
−
6
x
2
−
x
−
6
Simplify the following expression:
(
3
x
2
∗
7
x
7
)
+
(
2
y
3
∗
9
y
12
)
Report Question
0%
21
x
14
+
18
y
26
0%
10
x
9
+
11
y
15
0%
21
x
14
+
18
y
15
0%
21
x
9
+
18
y
15
If
x
+
y
=
2013
and
1
x
+
1
y
=
2013
,
what is the value of xy?
Report Question
0%
1
2013
0%
4026
0%
0
0%
1
Find the product of
(
p
+
2
q
)
(
p
+
3
q
)
when
p
=
1
,
q
=
0
.
Report Question
0%
0
0%
1
0%
2
0%
3
Explanation
p
×
p
+
2
q
×
p
+
p
×
3
q
+
2
q
×
3
q
=
p
2
+
6
q
2
+
5
p
q
at
p
=
1
,
q
=
0
product
=
1
+
0
+
0
=
1
Simplify the following expression:
(
2
x
4
y
7
m
2
z
)
T
M
(
5
x
2
y
3
m
8
)
Report Question
0%
10
x
6
y
9
m
10
z
0%
7
x
6
y
10
m
10
z
0%
10
x
5
y
10
m
10
z
0%
10
x
6
y
10
m
10
z
L
e
t
x
=
√
3
−
√
5
a
n
d
y
=
√
3
+
√
5
.
If the value of expression
x
−
y
+
2
x
2
y
+
2
x
y
2
−
x
4
y
+
x
y
4
can be expressed in the form
√
p
+
√
q
w
h
e
r
e
p
,
q
∈
N
,
then
(
p
+
q
)
has the value equal
Report Question
0%
448
0%
610
0%
510
0%
540
Explanation
Multiply:
2
3
,
x
y
,
6
x
2
y
2
a
n
d
1
4
y
3
i
s
_
Report Question
0%
x
3
y
3
0%
2
3
x
3
y
6
0%
x
3
y
6
0%
2
3
Multiply:
4
x
,
−
3
y
a
n
d
−
2
x
y
Report Question
0%
24
x
y
0%
24
x
2
y
2
0%
−
24
x
2
y
2
0%
−
24
x
y
Multiply:
3
x
2
,
2
x
y
,
4
x
y
2
Report Question
0%
24
x
4
y
3
0%
12
x
y
2
0%
24
x
2
y
2
0%
24
x
y
Find the value of
10.5
×
10.5
−
15
×
10.5
+
7.5
×
7.5
10.5
−
7.5
.
Report Question
0%
17
0%
3
0%
6
0%
22
The product of a monomial and a binomial is a
Report Question
0%
Monomial
0%
binomial
0%
Trinomial
0%
None of these
If
A
=
[
−
4
3
−
1
1
]
, then the determinant of the matrix
(
A
2016
−
2
A
2015
−
A
2014
)
is :
Report Question
0%
2014
0%
−
175
0%
2016
0%
−
25
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
0
Answered
1
Not Answered
24
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 8 Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page