Explanation
Cube of $$(-2)$$ is:
$$(-2)^3=(-2)\times (-2)\times (-2)$$
$$=-8$$.
Hence, option $$B$$ is correct.
On prime factorising, we get,
$$=3^3\times 5^3$$.
Then, value of $$\sqrt[3]{3375}$$ is:
$$\sqrt[3]{3375}=\sqrt[3]{3^3 \times 5^3}= 3\times5=15$$.
Therefore, option $$C$$ is correct.
$$=2^3\times 2^3\times 5^3$$.
Then, value of $$\sqrt[3]{8000}$$ is:
$$\sqrt[3]{8000}=\sqrt[3]{2^3 \times 2^3 \times 5^3}= 2\times2\times5=20$$.
$$=3^3\times 2^3=6^3$$.
Then, $$-216$$ $$=(-6)^3$$.
Therefore, cube root of $${-216}$$,
i.e. $$\sqrt[3]{-216}=\sqrt[3]{(-6)^3}= -6$$.
Therefore, option $$A$$ is correct.
$${9261}=\underline{3\times 3\times 3}\times \underline{7\times 7\times 7}=3^3 \times 7^3 $$.
Then, value of $$\sqrt[3]{9261}$$ is:
$$\sqrt[3]{9261}=\sqrt[3]{3^3\times 7^3}= 3 \times 7=21$$.
Therefore, option $$B$$ is correct.
$$3375=\underline{3\times 3\times 3}\times \underline {5\times5\times5}$$ $$=3^3 \times 5^3=15^3$$.
Then, $$-3375$$ $$=(-15)^3$$.
Therefore, value of $$\sqrt[3]{-3375}$$ is:
$$\sqrt[3]{-3375}=\sqrt[3]{(-15)^3}= -15$$.
$${\textbf{Step -1: Given, number is - 1.}}$$
$${\text{As we know that, prime factorization of 1 is,}}$$
$$1 = 1 \times 1 \times 1 = {1^3}$$
$${\text{So, prime factorization of - 1 will be,}}$$
$$ - 1 = \left( { - 1} \right) \times \left( { - 1} \right) \times \left( { - 1} \right) = {\left( { - 1} \right)^3}$$
$$ \Rightarrow - 1 = {\left( { - 1} \right)^3}$$
$${\textbf{Step -2: Taking cube root on both sides}}$$
$$ \Rightarrow \sqrt[3]{{ - 1}} = \sqrt[3]{{{{\left( { - 1} \right)}^3}}} = - 1.$$
$${\text{Thus, cube root of - 1 is - 1}}{\text{.}}$$
$${\textbf{ Hence, Option (B)}}{\textbf{ -1, is correct answer.}}$$
Therefore, cube root of $${-216}$$ is:
$$\sqrt[3]{-216}=\sqrt[3]{(-6)^3}= -6$$.
Therefore, option $$D$$ is correct.
Prime factorising $$8575$$, we get,
$$8575= 5 \times 5 \times 7 \times 7 \times 7 $$
$$= 5^2 \times 7 ^3$$.
We know, a perfect cube has multiples of $$3$$ as powers of prime factors.
Here, number of $$5$$'s is $$2$$ and number of $$7$$'s is $$3$$.
So we need to multiply another $$7$$ to the factorization to make $$8575$$ a perfect cube.
Hence, the smallest number by which $$8575$$ must be multiplied to obtain a perfect cube is $$5$$.
Hence, option $$C$$ is correct.
$$=2^3\times 2^3\times 2^3=8^3$$.
Then, $$-512$$ $$=(-8)^3$$.
Therefore, cube root of $${-512}$$,
i.e. $$\sqrt[3]{-512}=\sqrt[3]{(-8)^3}= -8$$.
Given, the number is $$4276$$.
Here, the units digit is $$6$$.
We know, the cube of $$6$$, i.e. $$6^3=216$$, whose units place is $$6$$.
Therefore, the units digit of the cube of $$4276$$ is $$6$$.
Hence, option $$A$$ is correct.
Given, the number is $$833$$.
Here, the units digit is $$3$$.
We know, the cube of $$3$$, i.e. $$3^3=27$$, whose units place is $$7$$.
Therefore, the units digit of the cube of $$833$$ is $$7$$.
Given, the number is $$125125125$$.
Here, the units digit is $$5$$.
We know, the cube of $$5$$, i.e. $$5^3=125$$, whose units place is $$5$$.
Therefore, the units digit of the cube of $$125125125$$ is $$5$$.
Given, the number is $$5922$$.
Here, the units digit is $$2$$.
We know that, for the cube of $$2$$, i.e. $$2^3=8$$, the unit digit is $$8$$.
Therefore, the units digit of the cube of $$5922$$ is $$8$$.
Given, the number is $$44447$$.
Here, the units digit is $$7$$.
We know, the cube of $$7$$, i.e. $$7^3=343$$, whose units place is $$3$$.
Therefore, the units digit of the cube of $$44447$$ is $$3$$.
Please disable the adBlock and continue. Thank you.