Explanation
Prime factorising $$25$$, we get,
$$25=5\times 5=5^2$$.
We know, a perfect cube has multiples of $$3$$ as powers of prime factors.
Here, number of $$5$$'s is $$2$$.
So we need to multiply another $$5$$ in the factorization to make $$25$$ a perfect cube.
Hence, the smallest number by which $$25$$ must be multiplied to obtain a perfect cube is $$5$$.
Prime factorising $$1296$$, we get,
$$1296= 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3$$
$$= 2^4 \times 3 ^4$$.
Here, number of $$2$$'s is $$4$$ and number of $$3$$'s is $$4$$.
So we need to divide $$2$$ and $$3$$ from the factorization to make $$1296$$ a perfect cube.
Hence, the smallest number by which $$1296$$ must be divided to obtain a perfect cube is $$2 \times 3=6$$.
$$675=5\times 5\times 3\times 3\times 3$$ $$ = 3^{3}\times5^2$$.
Here, number of $$3$$'s is $$3$$ and number of $$5$$'s is $$2$$.
So we need to multiply another $$5$$ in the factorization to make $$675$$ a perfect cube.
Hence, the smallest number by which $$675$$ must be multiplied to obtain a perfect cube is $$5$$.
Therefore, option $$A$$ is correct.
Prime factorising $$4096$$, we get,
$$4096 = 2\times2\times2\times2\times2\times2\times$$ $$2\times2\times2\times2\times2\times2$$ $$ = 2^{12}$$.
Here, number of $$2$$'s is $$12$$, which is a multiple of $$3$$.
Therefore, $$4096$$ is a perfect cube.
On prime factorisation of $$175616$$, we get,
$$ 175616= 2\times2\times2\times2\times2\times2\times2\times2\times2\times7\times7\times7$$
$$ = 8\times8\times8\times7\times7\times7$$
$$= 8^3 \times 7^3$$.
Then, cube root of $$175616$$ is:
$$\sqrt[3]{175616}=\sqrt[3]{8^3 \times 7^3}$$
$$= 8\times 7\times$$
$$=56$$
Prime factorising $$1188$$, we get,
$$1188 = 2 \times 2 \times 3 \times 3 \times 3 \times 11$$
$$= 2^2 \times 3^3 \times 11 $$.
Here, number of $$2$$'s is $$2$$, number of $$3$$'s is $$3$$ and number of $$11$$'s is $$1$$.
So we need to divide $$2^2$$ and $$11$$ from the factorization to make $$1188$$ a perfect cube.
Hence, the smallest number by which $$1188$$ must be divided to obtain a perfect cube is $$2^2 \times 11 = 44$$.
Prime factorising $$4320$$, we get,
$$ 4320 = 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 5$$
$$= 2 ^5 \times 3 ^3 \times 5^1$$.
Here, number of $$2$$'s is $$5$$, number of $$3$$'s is $$3$$ and number of $$5$$'s is $$1$$.
So we need to multiply another $$2$$, and $$5^2$$ in the factorization to make $$4320$$ a perfect cube.
Hence, the smallest number by which $$4320$$ must be multiplied to obtain a perfect cube is $$2\times 5^2=50$$.
Hence, option $$C$$ is correct.
On prime factorising, we get,
$$27000 = 2\times2\times2\times5\times5\times5\times3\times3\times3$$
$$= 2^3\times5^3\times3^3$$.
Then, cube root of $$27000$$ is:
$$\sqrt[3]{27000}=\sqrt[3]{3^3 \times 5^3 \times 2^3}= 3\times5\times2=30$$.
Therefore, $$30$$ is the required solution.
Hence, option $$A$$ is correct.
$$91125=(5 \times 5\times 5)\times (3\times3\times3)\times(3\times3\times3)$$
$$= 5^3 \times 3^3 \times 3^3$$.
Then, cube root of $$91125$$ is:
$$\sqrt[3]{91125}=\sqrt[3]{5^3 \times 3^3 \times 3^3 }=5\times 3\times 3=45$$.
On prime factorisation of the numbers individually, we get,
$$125=\underline { 5 \times 5 \times 5 }=5^3$$.
$$1331=\underline { 11 \times 11 \times 11 }=11^3$$.
Then, cube root of $$-\dfrac{125}{1331}$$ is:
$$ \displaystyle \sqrt [ 3 ]{-\dfrac{125}{1331}}$$ $$ =\displaystyle \sqrt [ 3 ]{-\dfrac{5^3}{11^3}}$$ $$ =\displaystyle \sqrt [ 3 ]{(-\dfrac{5}{11})^3}$$ $$= \displaystyle {-\dfrac{5}{11}}$$.
Thus, option $$B$$ is correct.
$$ 216=\underline { 2 \times 2 \times 2 } \times \underline { 3 \times 3 \times 3 }=2^3\times 3^3=6^3$$.
$$2197=\underline { 13 \times 13 \times 13 }=13^3$$.
$$ 27=\underline { 3 \times 3 \times 3 }=3^3$$.
Therefore, cube root of $$\dfrac{27}{125}$$ is:
$$ \displaystyle {\sqrt [ 3 ]{ \dfrac{27}{125}}=\sqrt [ 3 ]{ \dfrac{3^3}{5^3}}=\dfrac{3}{5}} $$.
$$216=\underline{6\times 6\times 6}$$ $$=6^3$$.
$$343=\underline{7\times 7\times 7}$$ $$=7^3$$.
Then, $$-343$$ $$=(-7)^3$$.
Therefore, value of $$\sqrt[3]{216\times(-343)}$$ is:
$$\sqrt[3]{6^3\times(-7)^3}=6\times(-7)=-42$$.
Therefore, option $$B$$ is correct.
$$13824 = 3\times3\times3\times2\times2\times2\times2\times2\times2\times2\times2\times2$$
$$= 2^3\times2^3\times2^3\times3^3=24^3$$.
Then, cube root of $$13824$$ is:
$$\sqrt[3]{13824}=\sqrt[3]{24^3}= 24$$.
$$ 110592 = \underline{2\times2\times2}\times\underline{2\times2\times2}\times\underline{2\times2\times2}\times\underline{2\times3}\times\underline{2\times3}\times\underline{2\times3}$$
$$= 8^3\times6^3$$.
Then, cube root of $$110592$$ is:
$$\sqrt[3]{110592}=\sqrt[3]{8^3 \times 6^3}= 8\times6=48$$.
Therefore, $$48$$ is the required solution.
Hence, option $$B$$ is correct.
$$35937=(3\times3\times3)\times(11\times11\times11)$$
$$= 3^3 \times 11^3$$.
Then, cube root of $$35937$$ is:
$$\sqrt[3]{35937}=\sqrt[3]{3^3 \times 11^3}$$
$$= 3\times 11$$
$$=33$$.
$$=2^3\times 2^3\times 2^3\times 2^3$$.
Then, value of $$\sqrt[3]{4096}$$ is:
$$\sqrt[3]{4096}=\sqrt[3]{2^3 \times 2^3 \times 2^3 \times 2^3}= 2\times2\times2\times2=16$$.
Therefore, option $$D$$ is correct.
$$1331=\underline{11\times 11\times 11}$$ $$=11^3$$.
Therefore, value of $$\sqrt[3]{1331}$$ is:
$$\sqrt[3]{1331}=\sqrt[3]{(11)^3}= 11$$.
Then, $$-1331$$ $$=(-11)^3$$.
Therefore, value of $$\sqrt[3]{-1331}$$ is:
$$\sqrt[3]{-1331}=\sqrt[3]{(-11)^3}= -11$$.
$$8000=\underline{2\times 2\times 2}\times \underline{2\times2\times2} \times \underline{5\times5\times5}$$ $$=2^3\times 2^3 \times 5^3=20^3$$.
Then, $$-8000$$ $$=(-20)^3$$.
Therefore, value of $$\sqrt[3]{-8000}$$ is:
$$\sqrt[3]{-8000}=\sqrt[3]{(-20)^3}= -20$$.
$$27000=\underline{3\times 3\times 3}\times \underline{2\times2\times2}\times \underline{5\times5\times5}$$ $$=2^3\times3^3\times5^3=30^3$$.
Then, $$-27000$$ $$=(-30)^3$$.
Therefore, value of $$\sqrt[3]{-27000}$$ is:
$$\sqrt[3]{-27000}=\sqrt[3]{(-30)^3}= -30$$.
Prime factorising $$6912$$, we get,
$$6912 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3$$
$$= 2 ^8 \times 3 ^3$$.
Here, number of $$2$$'s is $$8$$ and number of $$3$$'s is $$3$$.
So we need to multiply another $$2$$ to the factorization to make $$6912$$ a perfect cube.
Hence, the smallest number by which $$6912$$ must be multiplied to obtain a perfect cube is $$2$$.
Please disable the adBlock and continue. Thank you.