Explanation
Prime factorising 25, we get,
25=5\times 5=5^2.
We know, a perfect cube has multiples of 3 as powers of prime factors.
Here, number of 5's is 2.
So we need to multiply another 5 in the factorization to make 25 a perfect cube.
Hence, the smallest number by which 25 must be multiplied to obtain a perfect cube is 5.
Prime factorising 1296, we get,
1296= 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3
= 2^4 \times 3 ^4.
Here, number of 2's is 4 and number of 3's is 4.
So we need to divide 2 and 3 from the factorization to make 1296 a perfect cube.
Hence, the smallest number by which 1296 must be divided to obtain a perfect cube is 2 \times 3=6.
675=5\times 5\times 3\times 3\times 3 = 3^{3}\times5^2.
Here, number of 3's is 3 and number of 5's is 2.
So we need to multiply another 5 in the factorization to make 675 a perfect cube.
Hence, the smallest number by which 675 must be multiplied to obtain a perfect cube is 5.
Therefore, option A is correct.
Prime factorising 4096, we get,
4096 = 2\times2\times2\times2\times2\times2\times 2\times2\times2\times2\times2\times2 = 2^{12}.
Here, number of 2's is 12, which is a multiple of 3.
Therefore, 4096 is a perfect cube.
On prime factorisation of 175616, we get,
175616= 2\times2\times2\times2\times2\times2\times2\times2\times2\times7\times7\times7
= 8\times8\times8\times7\times7\times7
= 8^3 \times 7^3.
Then, cube root of 175616 is:
\sqrt[3]{175616}=\sqrt[3]{8^3 \times 7^3}
= 8\times 7\times
=56
Prime factorising 1188, we get,
1188 = 2 \times 2 \times 3 \times 3 \times 3 \times 11
= 2^2 \times 3^3 \times 11 .
Here, number of 2's is 2, number of 3's is 3 and number of 11's is 1.
So we need to divide 2^2 and 11 from the factorization to make 1188 a perfect cube.
Hence, the smallest number by which 1188 must be divided to obtain a perfect cube is 2^2 \times 11 = 44.
Prime factorising 4320, we get,
4320 = 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 5
= 2 ^5 \times 3 ^3 \times 5^1.
Here, number of 2's is 5, number of 3's is 3 and number of 5's is 1.
So we need to multiply another 2, and 5^2 in the factorization to make 4320 a perfect cube.
Hence, the smallest number by which 4320 must be multiplied to obtain a perfect cube is 2\times 5^2=50.
Hence, option C is correct.
On prime factorising, we get,
27000 = 2\times2\times2\times5\times5\times5\times3\times3\times3
= 2^3\times5^3\times3^3.
Then, cube root of 27000 is:
\sqrt[3]{27000}=\sqrt[3]{3^3 \times 5^3 \times 2^3}= 3\times5\times2=30.
Therefore, 30 is the required solution.
Hence, option A is correct.
91125=(5 \times 5\times 5)\times (3\times3\times3)\times(3\times3\times3)
= 5^3 \times 3^3 \times 3^3.
Then, cube root of 91125 is:
\sqrt[3]{91125}=\sqrt[3]{5^3 \times 3^3 \times 3^3 }=5\times 3\times 3=45.
On prime factorisation of the numbers individually, we get,
125=\underline { 5 \times 5 \times 5 }=5^3.
1331=\underline { 11 \times 11 \times 11 }=11^3.
Then, cube root of -\dfrac{125}{1331} is:
\displaystyle \sqrt [ 3 ]{-\dfrac{125}{1331}} =\displaystyle \sqrt [ 3 ]{-\dfrac{5^3}{11^3}} =\displaystyle \sqrt [ 3 ]{(-\dfrac{5}{11})^3} = \displaystyle {-\dfrac{5}{11}}.
Thus, option B is correct.
216=\underline { 2 \times 2 \times 2 } \times \underline { 3 \times 3 \times 3 }=2^3\times 3^3=6^3.
2197=\underline { 13 \times 13 \times 13 }=13^3.
27=\underline { 3 \times 3 \times 3 }=3^3.
Therefore, cube root of \dfrac{27}{125} is:
\displaystyle {\sqrt [ 3 ]{ \dfrac{27}{125}}=\sqrt [ 3 ]{ \dfrac{3^3}{5^3}}=\dfrac{3}{5}} .
216=\underline{6\times 6\times 6} =6^3.
343=\underline{7\times 7\times 7} =7^3.
Then, -343 =(-7)^3.
Therefore, value of \sqrt[3]{216\times(-343)} is:
\sqrt[3]{6^3\times(-7)^3}=6\times(-7)=-42.
Therefore, option B is correct.
13824 = 3\times3\times3\times2\times2\times2\times2\times2\times2\times2\times2\times2
= 2^3\times2^3\times2^3\times3^3=24^3.
Then, cube root of 13824 is:
\sqrt[3]{13824}=\sqrt[3]{24^3}= 24.
110592 = \underline{2\times2\times2}\times\underline{2\times2\times2}\times\underline{2\times2\times2}\times\underline{2\times3}\times\underline{2\times3}\times\underline{2\times3}
= 8^3\times6^3.
Then, cube root of 110592 is:
\sqrt[3]{110592}=\sqrt[3]{8^3 \times 6^3}= 8\times6=48.
Therefore, 48 is the required solution.
Hence, option B is correct.
35937=(3\times3\times3)\times(11\times11\times11)
= 3^3 \times 11^3.
Then, cube root of 35937 is:
\sqrt[3]{35937}=\sqrt[3]{3^3 \times 11^3}
= 3\times 11
=33.
=2^3\times 2^3\times 2^3\times 2^3.
Then, value of \sqrt[3]{4096} is:
\sqrt[3]{4096}=\sqrt[3]{2^3 \times 2^3 \times 2^3 \times 2^3}= 2\times2\times2\times2=16.
Therefore, option D is correct.
1331=\underline{11\times 11\times 11} =11^3.
Therefore, value of \sqrt[3]{1331} is:
\sqrt[3]{1331}=\sqrt[3]{(11)^3}= 11.
Then, -1331 =(-11)^3.
Therefore, value of \sqrt[3]{-1331} is:
\sqrt[3]{-1331}=\sqrt[3]{(-11)^3}= -11.
8000=\underline{2\times 2\times 2}\times \underline{2\times2\times2} \times \underline{5\times5\times5} =2^3\times 2^3 \times 5^3=20^3.
Then, -8000 =(-20)^3.
Therefore, value of \sqrt[3]{-8000} is:
\sqrt[3]{-8000}=\sqrt[3]{(-20)^3}= -20.
27000=\underline{3\times 3\times 3}\times \underline{2\times2\times2}\times \underline{5\times5\times5} =2^3\times3^3\times5^3=30^3.
Then, -27000 =(-30)^3.
Therefore, value of \sqrt[3]{-27000} is:
\sqrt[3]{-27000}=\sqrt[3]{(-30)^3}= -30.
Prime factorising 6912, we get,
6912 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3
= 2 ^8 \times 3 ^3.
Here, number of 2's is 8 and number of 3's is 3.
So we need to multiply another 2 to the factorization to make 6912 a perfect cube.
Hence, the smallest number by which 6912 must be multiplied to obtain a perfect cube is 2.
Please disable the adBlock and continue. Thank you.