Explanation
Prime factorising $$11979$$, we get,
$$ 11979 = 3 \times 3 \times 11 \times 11 \times 11$$
$$= 3^2 \times 11 ^3$$.
We know, a perfect cube has multiples of $$3$$ as powers of prime factors.
Here, number of $$3$$'s is $$2$$ and number of $$11$$'s is $$3$$.
So we need to multiply another $$3$$ to the factorization to make $$11979$$ a perfect cube.
Hence, the smallest number by which $$11979$$ must be multiplied to obtain a perfect cube is $$3$$.
Hence, option $$D$$ is correct.
On prime factorisation of the numbers individually, we get,
$$64=\underline { 2 \times 2 \times 2 } \times \underline { 2 \times 2 \times 2 }$$ $$ =2^3 \times 2^3=4^3$$.
$$729=\underline { 3 \times 3 \times 3 } \times \underline { 3 \times 3\times 3 } $$ $$=3^3 \times 3^3=9^3$$.
Therefore,
$$ \sqrt [ 3 ]{ 64 \times 729 }$$ $$= \sqrt [ 3 ]{4^3 \times 9^3 }$$ $$=4\times9=36$$.
Hence, option $$C$$ is correct.
Given, to find $$\sqrt[3]{12167\times 1728}$$.
Prime factorising, we get,
$$12167= 23\times23\times23=23^3$$
and $$1728$$ $$= 2\times2\times2\times2\times2\times2\times3\times3\times3 \\ =2^3 \times 2^3 \times 3^3.$$
Then,
$$\sqrt[3]{12167\times 1728}$$
$$= \sqrt[3]{23^3}\times \sqrt[3]{2^3 \times 2^3 \times 3^3}$$.
$$= 23\times2\times2\times 3$$
$$= 276$$.
Hence, option $$A$$ is correct.
$$ 216=\underline { 2 \times 2 \times 2 } \times \underline { 3 \times 3 \times 3 }=2^3 \times 3^3 =6^3$$.
$$2197=\underline { 13 \times 13 \times 13 } =13^3 $$.
$$ \ \sqrt[3] {\cfrac {216}{2197}}$$$$= \cfrac {\sqrt[3]{216}} {\sqrt[3]{2197}} $$ $$=\cfrac {\sqrt[3]{ 6^3}}{ \sqrt[3]{13^3}} $$ $$=\dfrac {6}{13}.$$
Thus, option $$C$$ is correct.
Given, the number is $$388$$.
Here, the units digit is $$8$$.
We know, the cube of $$8$$, i.e. $$8^3=512$$, whose units place is $$2$$.
Therefore, the units digit of the cube of $$388$$ is $$2$$.
Given, the number is $$109$$.
Here, the units digit is $$9$$.
We know, the cube of $$9$$, i.e. $$9^3=729$$, whose units place is $$9$$.
Therefore, the units digit of the cube of $$109$$ is $$9$$.
A) $$64=\underline { 2 \times 2 \times 2 } \times \underline { 2 \times 2 \times 2 }=4^3$$.
B) $$729=\underline { 3 \times 3 \times 3 } \times \underline { 3\times 3 \times 3 }=3^3 \times 3^3=9^3$$.
C) $$ 243=\underline { 3 \times 3 \times 3 } \times { 3 \times 3 }=3^5$$.
D) $$ 81=\underline { 3 \times 3 \times 3 } \times { 3 }=3^4$$.
Given, the number is $$77774$$.
Here, the units digit is $$4$$.
We know, the cube of $$4$$, i.e. $$4^3=64$$, whose units place is $$4$$.
Therefore, the units digit of the cube of $$77774$$ is $$4$$.
On prime factorising, we get,
$$274625000=(5 \times 5\times 5)\times (5\times5\times5)\times(2\times2\times2)\times(13\times13\times13)$$
$$= 5^3 \times 5^3 \times 2^3 \times 13^3$$.
Then, cube root of $$274625000$$ is:
$$\sqrt[3]{274625000}=\sqrt[3]{5^3 \times 5^3 \times 2^3 \times 13^3}= 5\times 5\times 2\times 13=650$$.
Therefore, option $$A$$ is correct.
$$614125 = 5\times5\times5\times17\times17\times17$$
$$= 5^3\times17^3$$.
Then, cube root of $$614125$$ is:
$$\sqrt[3]{614125}=\sqrt[3]{5^3 \times 17^3}= 5\times17=85$$.
Therefore, option $$C$$ is correct.
$$571787=\underline{83\times 83\times 83}$$ $$=83^3$$.
Then, $$-571787$$ $$=(-83)^3$$.
Therefore, cube root of $${-571787}$$ is:
$$\sqrt[3]{-571787}=\sqrt[3]{(-83)^3}= -83$$.
Therefore, option $$B$$ is correct.
$$ 175616= 8\times8\times8\times7\times7\times7$$
$$= 8^3 \times 7^3$$.
Then, cube root of $$175616$$ is:
$$\sqrt[3]{175616}=\sqrt[3]{8^3 \times 7^3}= 8\times 7\times=56$$.
On prime factorizing, we get,
$$592704 = 2\times2\times2\times2\times2\times2\times3\times3\times3\times7\times7\times7$$
$$= 2^3\times2^3\times3^3\times7^3 \\=84^3.$$
Thus, cube root of $$592704$$ is:
$$\sqrt[3]{592704}=\sqrt[3]{84^3 } \\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =84$$.
$$250047$$ $$=\underline{3\times3\times3}\times\underline{3\times3\times3}\times\underline{7\times 7\times 7}$$
$$= 3^3\times3^3\times7^3=63^3$$.
Then, cube root of $$250047$$ is:
$$\sqrt[3]{250047}=\sqrt[3]{63^3}= 63$$.
$$226981=\underline{61\times 61\times 61}$$ $$=61^3$$.
Then, $$-226981$$ $$=(-61)^3$$.
Therefore, value of $$\sqrt[3]{-226981}$$ is:
$$\sqrt[3]{-226981}=\sqrt[3]{(-61)^3}= -61$$.
$$438976$$ $$=\underline{2\times2\times2}\times\underline{2\times2\times2}\times\underline{19\times 19\times 19}$$
$$= 2^3\times2^3\times19^3=76^3$$.
Then, cube root of $$438976$$ is:
$$\sqrt[3]{438976}=\sqrt[3]{76^3}= 76$$.
Please disable the adBlock and continue. Thank you.