Processing math: 17%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 8 Maths Factorisation Quiz 1 - MCQExams.com
CBSE
Class 8 Maths
Factorisation
Quiz 1
Evaluate
(
x
3
+
2
x
2
+
3
x
)
÷
2
x
Report Question
0%
(
x
2
+
2
x
−
3
)
÷
2
0%
(
x
2
−
2
x
+
3
)
÷
2
0%
(
x
2
+
2
x
+
3
)
÷
2
0%
(
x
2
+
x
+
3
)
÷
2
Explanation
(
x
3
+
2
x
2
+
3
x
)
÷
2
x
=
(
x
×
x
×
x
)
+
(
2
×
x
×
x
)
+
(
3
×
x
)
=
x
(
x
2
+
2
x
+
3
)
2
x
=
1
2
(
x
2
+
2
x
+
3
)
Factorise:
16
a
2
−
24
a
b
Report Question
0%
8
(
2
a
−
3
b
)
0%
8
a
(
2
a
+
3
b
)
0%
8
a
(
2
a
−
3
b
)
0%
8
a
(
2
a
−
3
)
Explanation
16
a
2
−
24
a
b
Taking 8a as a common,
=
8
a
(
2
a
−
3
b
)
Answer
8
a
(
2
a
−
3
b
)
The process of finding the factors of given number (or expression) is called ...........
Report Question
0%
multiplication
0%
factorisation
0%
division
0%
addition
Explanation
The process of finding the factors of given number (or expression) is called Factorization.
Evaluate
(
10
x
−
25
)
÷
5
Report Question
0%
2
x
−
5
0%
2
x
+
6
0%
3
x
−
5
0%
3
x
+
6
Explanation
(
10
x
−
25
)
÷
5
=
10
x
−
25
5
=
5
×
(
2
x
−
5
)
5
=
2
x
−
5
Factorise the following expression:
7
a
2
+
14
a
Report Question
0%
7
a
(
a
+
2
)
0%
7
(
a
−
2
)
0%
14
(
7
a
+
1
)
0%
7
a
(
a
−
2
)
Explanation
Given expression is
7
a
2
+
14
a
Taking common factor
7
a
from both terms we get,
7
a
(
a
+
2
)
Hence, option A is correct.
Factorise the following expressions:
a
x
2
y
+
b
x
y
2
+
c
x
y
z
Report Question
0%
xy(ax + by + cz)
0%
axy(x + by + cz)
0%
bxy(ax + y + cz)
0%
xy(ax + by - cz)
Explanation
a
x
2
y
+
b
x
y
2
+
c
x
y
z
In the above expression, the common factor is
=
x
y
∴
a x^2 y + b x y^2 + c x y z
=
xy(ax+by+cz)
Factorise the expression:
ax^2 + bx
Report Question
0%
x(ax + b)
0%
x(ax - b)
0%
x(a + b)
0%
x(a - b)
Explanation
To factorise:
ax^2+bx
Now,
ax^2+bx
=ax\times x+b\times x
=x(ax+b)
Hence, the factorised form is
x(ax+b)
.
Factorise the following expression:
16 z + 20 z^3
Report Question
0%
4z( 2 - 5z^2)
0%
4z( 4 + 5z)
0%
4z( 4 + 5z^2)
0%
4z( 2 + 5z^2)
Explanation
16 z + 20 z^3
Taking common factor 4z from both the terms we get,
=4z(4+5z^2)
Factorise the following expression:
4 a^2 + 4 ab -4 ca
Report Question
0%
4a( a + b - c)
0%
4b( a + b - c)
0%
4c( a + b - c)
0%
4a(a+b+c)
Explanation
4a^{ 2 }+4ab-4ca
The common factor
=2\times 2\times a
Thus,
4a^{ 2 }+4ab-4ca=4a(a+b-c)
Factorise the following expressions.
20l^2 m + 30 a l m = 10lm(2l+3a)
Report Question
0%
True
0%
False
Explanation
20 { l}^{2 } m + 30 a l m
=10lm(2l+3a)
Factorize:
5 x^2 y -15 xy^2
Report Question
0%
5x(x-3y)
0%
3x(x-5y)
0%
5xy(x-3y)
0%
3xy(x-5y)
Explanation
5{x }^{ 2}y-15x{y}^{2}
Taking common factor
5xy
for both the terms we get,
=5xy(x-3y)
Factorise the expression.
7p^2 + 21q^2
Report Question
0%
7(p^2 + 7q^2)
0%
7(p^2 + 2q^2)
0%
7(p^2 + 3q^2)
0%
7(p^2 + 4q^2)
Explanation
\begin{aligned}{}7{p^2} + 21{q^2}& = 7{p^2} + 7 \times 3{q^2}\\ &= 7\left( {{p^2} + 3{q^2}} \right)\end{aligned}
Divide the given polynomial by the given monomial.
(3y^8- 4y^6 + 5y^4) \div y^4
Report Question
0%
3y^4 +4y^2 + 5
0%
3y^4 -4y^2 + 5
0%
3y^4 -2y^2 + 5
0%
3y^4 +2y^2 + 5
Explanation
(3y^{ 8 }-4y^{ 6 }+5y^{ 4 })\div y^{ 4 }
=\dfrac{(3y^{ 8 }-4y^{ 6 }+5y^{ 4 })}{y^{ 4 }}
=\dfrac{y^4(3y^{ 4 }-4y^{ 2 }+5)}{y^{ 4 }}
=(3y^{ 4 }-4y^{ 2 }+5)
Divide the given polynomial by the given monomial.
(x^3 + 2x^2 + 3x)\div 2x
Report Question
0%
\dfrac{1}{2}(x^2+2x+3)
0%
\dfrac{1}{4}(x^2-2x+3)
0%
\dfrac{1}{2}(x^2-2x+3)
0%
\dfrac{1}{2}(x^2+2x-3)
Explanation
(x^{ 3 }+2x^{ 2 }+3x)\div 2x
=\dfrac{(x^{ 3 }+2x^{ 2 }+3x)}{2x}
=\dfrac{x(x^2+2x+3)}{2x}
=\dfrac{(x^2+2x+3)}{2}
Divide the given polynomial by the given monomial.
8(x^3y^2z^2 + x^2y^3z^2 + x^2y^2z^3)\div 4x^2y^2z^2
Report Question
0%
2(x - y + z)
0%
2(x + y-z)
0%
2(x + y + z)
0%
4(x + y + z)
Explanation
8(x^{ 3 }y^{ 2 }z^{ 2 }+x^{ 2 }y^{ 3 }z^{ 2 }+x^{ 2 }y^{ 2 }z^{ 3 })\div 4x^{ 2 }y^{ 2 }z^{ 2 }
=\dfrac{8(x^{ 3 }y^{ 2 }z^{ 2 }+x^{ 2 }y^{ 3 }z^{ 2 }+x^{ 2 }y^{ 2 }z^{ 3 })}{4x^{ 2 }y^{ 2 }z^{ 2 }}
=\dfrac{8x^2y^2z^2(x+y+z)}{4x^{ 2 }y^{ 2 }z^{ 2 }}
=2(x+y+z)
Factorize
3a^{2}-9ab
by taking common factors.
Report Question
0%
3a\left ( a-3b \right )
0%
3a\left ( a-b \right )
0%
3a\left ( 3a-b \right )
0%
3a\left ( a+b \right )
Explanation
3a^{2}-9ab
3
and
a
are common in the above two terms in the addition, so taking these as common.
3a^2-9ab=3a(a-3b)
Option A is correct.
Factorise:
5t+25t^2
Report Question
0%
5t(1+5t)
0%
t(1-5t)
0%
5t(1-5t)
0%
t(1+5t)
Explanation
5t+25t^2
=5t(1+5t)
Factorise:
ab-4ac
Report Question
0%
a(b+ 4c)
0%
(b- 4c)
0%
a(b- 4c)
0%
a(b- c)
Explanation
The common variable in the two terms is
a
. So, we can take
a
common from both the terms as follows:
ab-4ac =a(b-4c)
Hence, option C is correct.
Factorise:
4a + 12b
Report Question
0%
4(a + 3b)
0%
a(4+3b)
0%
4a(1+3b)
0%
4(a+4b)
Explanation
4a+12b
= (2\times 2 \times a) + (2\times 2\times 3 \times b)
= (2\times 2) (a + 3 \times b)
= 4 (a+3b)
Factorise
a^3 - a^2 + a
Report Question
0%
a(a^2 - a - 1)
0%
a(a^2 + a + 1)
0%
(a^2 - a + 1)
0%
a(a^2 - a + 1)
Factorise:
4x-8y
Report Question
0%
4(x-4y)
0%
3(x-y)
0%
4(3x-2y)
0%
4(x-2y)
Explanation
4x-8y
=4(x-2y)
Factorise
15 x + 5
Report Question
0%
5(3x + 1)
0%
5(x+1)
0%
3(5x+1)
0%
15(x+1)
Explanation
15x+5
= (5\times 3 \times x) + (5\times1)
= 5(3\times x +1)
= 5(3x+1)
Factorise
9b-12x
Report Question
0%
2(3b + 4x)
0%
3(b - 4x)
0%
3(3b - 4x)
0%
2(3b - x)
Explanation
Factorizing\quad 9b-12x,\\ 3*\frac { 9b-12x }{ 3 } \quad =3(3b-4x)
State whether True or False.
Divide:
-4a^2b^3-8ab^2+6ab
by
-2ab
, then answer is
2ab^2+4b-3
.
Report Question
0%
True
0%
False
Explanation
\Rightarrow \frac{-4a^2b^3-8ab^2+6ab}{-2ab}
In
-4a^2b^3-8ab^2+6ab
we take
-2ab
common then
\Rightarrow \frac{-2ab\left(2ab^2+4b-3 \right)}{-2ab}
\Rightarrow 2ab^2+4b-3
State whether True or False.
Divide:
15a^3b^4- 10a^4b^3-25a^3b^6
by
-5a^3b^2
, then answer is
-3b^2+2ab+5b^4
.
Report Question
0%
True
0%
False
Explanation
\Rightarrow 15a^3b^4- 10a^4b^3-25a^3b^6 \div -5a^3b^2
\Rightarrow \frac{15a^3b^4- 10a^4b^3-25a^3b^6}{-5a^3b^2}
we take
5a^3b^2
common
\Rightarrow \frac{5a^3b^2\left (3b^2-2ab-5b^4 \right )}{-5a^3b^2}
\Rightarrow -3b^2+2ab+5b^4
Factorise
4a^2 - 8 ab
Report Question
0%
4a(a + 2b)
0%
4a(a - b)
0%
4a(a - 2b)
0%
a(a - 2b)
Explanation
Given expression is
4a^2-8ab
.
Taking
4a
common from both terms of
4a^2-8ab
, we get:
4a(a-2b)
Hence,
4a^2-8ab=4a(a-2b)
.
Factorise:
3x^2 + 6x^3
Report Question
0%
3x^2 (1 + 2x)
0%
3x^2 (1 - 2x)
0%
x^2 (1 + 2x)
0%
3x^2 (1 + x)
Explanation
Factorizing:\quad { 3x }^{ 2 }+{ 6x }^{ 3 },\\ we\quad take\quad 3{ x }^{ 2 }\quad common,\\ =3{ x }^{ 2 }(1+2x)
State whether True or False.
Factorization of
6x^3 - 8x^2
is
2x^2 (3x - 4)
.
Report Question
0%
True
0%
False
Explanation
\\ 6{ x }^{ 2 }+8{ x }^{ 3 }\\ =2{ x }^{ 2 }(3-4x)\\ \\
State whether True or False
Factorization of
36 x^2 y^2 - 30 x^3 y^3 + 48 x^3 y^2
is
6x^2 y^2 (6 - 5xy + 8x)
.
Report Question
0%
True
0%
False
Explanation
Factorizing\quad 36x^{ 2 }y^{ 2 }-30x^{ 3 }y^{ 3 }+48x^{ 3 }y^{ 2 },\\ =6x^{ 2 }y^{ 2 }(6-5xy+8x)
State whether True or False.
Divide:
-14x^6y^3-21x^4y^5+7x^5y^4
by
7x^2y^2
, then answer is
-2x^4y-3x^2y^3+x^3y^2
.
Report Question
0%
True
0%
False
Explanation
\Rightarrow -14x^6y^3-21x^4y^5+7x^5y^4 \div 7x^2y^2
\Rightarrow \frac{-14x^6y^3-21x^4y^5+7x^5y^4}{7x^2y^2}
We take
7x^2y^2
common
\Rightarrow \frac{7x^2y^2\left (-2x^4y-3x^2y^3+x^3y^2 \right )}{7x^2y^2}
\Rightarrow -2x^4y-3x^2y^3+x^3y^2
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 8 Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page