Processing math: 100%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 8 Maths Factorisation Quiz 1 - MCQExams.com
CBSE
Class 8 Maths
Factorisation
Quiz 1
Evaluate
(
x
3
+
2
x
2
+
3
x
)
÷
2
x
Report Question
0%
(
x
2
+
2
x
−
3
)
÷
2
0%
(
x
2
−
2
x
+
3
)
÷
2
0%
(
x
2
+
2
x
+
3
)
÷
2
0%
(
x
2
+
x
+
3
)
÷
2
Explanation
(
x
3
+
2
x
2
+
3
x
)
÷
2
x
=
(
x
×
x
×
x
)
+
(
2
×
x
×
x
)
+
(
3
×
x
)
=
x
(
x
2
+
2
x
+
3
)
2
x
=
1
2
(
x
2
+
2
x
+
3
)
Factorise:
16
a
2
−
24
a
b
Report Question
0%
8
(
2
a
−
3
b
)
0%
8
a
(
2
a
+
3
b
)
0%
8
a
(
2
a
−
3
b
)
0%
8
a
(
2
a
−
3
)
Explanation
16
a
2
−
24
a
b
Taking 8a as a common,
=
8
a
(
2
a
−
3
b
)
Answer
8
a
(
2
a
−
3
b
)
The process of finding the factors of given number (or expression) is called ...........
Report Question
0%
multiplication
0%
factorisation
0%
division
0%
addition
Explanation
The process of finding the factors of given number (or expression) is called Factorization.
Evaluate
(
10
x
−
25
)
÷
5
Report Question
0%
2
x
−
5
0%
2
x
+
6
0%
3
x
−
5
0%
3
x
+
6
Explanation
(
10
x
−
25
)
÷
5
=
10
x
−
25
5
=
5
×
(
2
x
−
5
)
5
=
2
x
−
5
Factorise the following expression:
7
a
2
+
14
a
Report Question
0%
7
a
(
a
+
2
)
0%
7
(
a
−
2
)
0%
14
(
7
a
+
1
)
0%
7
a
(
a
−
2
)
Explanation
Given expression is
7
a
2
+
14
a
Taking common factor
7
a
from both terms we get,
7
a
(
a
+
2
)
Hence, option A is correct.
Factorise the following expressions:
a
x
2
y
+
b
x
y
2
+
c
x
y
z
Report Question
0%
xy(ax + by + cz)
0%
axy(x + by + cz)
0%
bxy(ax + y + cz)
0%
xy(ax + by - cz)
Explanation
a
x
2
y
+
b
x
y
2
+
c
x
y
z
In the above expression, the common factor is
=
x
y
∴
a
x
2
y
+
b
x
y
2
+
c
x
y
z
=
x
y
(
a
x
+
b
y
+
c
z
)
Factorise the expression:
a
x
2
+
b
x
Report Question
0%
x
(
a
x
+
b
)
0%
x
(
a
x
−
b
)
0%
x
(
a
+
b
)
0%
x
(
a
−
b
)
Explanation
To factorise:
a
x
2
+
b
x
Now,
a
x
2
+
b
x
=
a
x
×
x
+
b
×
x
=
x
(
a
x
+
b
)
Hence, the factorised form is
x
(
a
x
+
b
)
.
Factorise the following expression:
16
z
+
20
z
3
Report Question
0%
4
z
(
2
−
5
z
2
)
0%
4
z
(
4
+
5
z
)
0%
4
z
(
4
+
5
z
2
)
0%
4
z
(
2
+
5
z
2
)
Explanation
16
z
+
20
z
3
Taking common factor 4z from both the terms we get,
=
4
z
(
4
+
5
z
2
)
Factorise the following expression:
4
a
2
+
4
a
b
−
4
c
a
Report Question
0%
4
a
(
a
+
b
−
c
)
0%
4
b
(
a
+
b
−
c
)
0%
4
c
(
a
+
b
−
c
)
0%
4
a
(
a
+
b
+
c
)
Explanation
4
a
2
+
4
a
b
−
4
c
a
The common factor
=
2
×
2
×
a
Thus,
4
a
2
+
4
a
b
−
4
c
a
=
4
a
(
a
+
b
−
c
)
Factorise the following expressions.
20
l
2
m
+
30
a
l
m
=
10
l
m
(
2
l
+
3
a
)
Report Question
0%
True
0%
False
Explanation
20
l
2
m
+
30
a
l
m
=
10
l
m
(
2
l
+
3
a
)
Factorize:
5
x
2
y
−
15
x
y
2
Report Question
0%
5
x
(
x
−
3
y
)
0%
3
x
(
x
−
5
y
)
0%
5
x
y
(
x
−
3
y
)
0%
3
x
y
(
x
−
5
y
)
Explanation
5
x
2
y
−
15
x
y
2
Taking common factor
5
x
y
for both the terms we get,
=
5
x
y
(
x
−
3
y
)
Factorise the expression.
7
p
2
+
21
q
2
Report Question
0%
7
(
p
2
+
7
q
2
)
0%
7
(
p
2
+
2
q
2
)
0%
7
(
p
2
+
3
q
2
)
0%
7
(
p
2
+
4
q
2
)
Explanation
7
p
2
+
21
q
2
=
7
p
2
+
7
×
3
q
2
=
7
(
p
2
+
3
q
2
)
Divide the given polynomial by the given monomial.
(
3
y
8
−
4
y
6
+
5
y
4
)
÷
y
4
Report Question
0%
3
y
4
+
4
y
2
+
5
0%
3
y
4
−
4
y
2
+
5
0%
3
y
4
−
2
y
2
+
5
0%
3
y
4
+
2
y
2
+
5
Explanation
(
3
y
8
−
4
y
6
+
5
y
4
)
÷
y
4
=
(
3
y
8
−
4
y
6
+
5
y
4
)
y
4
=
y
4
(
3
y
4
−
4
y
2
+
5
)
y
4
=
(
3
y
4
−
4
y
2
+
5
)
Divide the given polynomial by the given monomial.
(
x
3
+
2
x
2
+
3
x
)
÷
2
x
Report Question
0%
1
2
(
x
2
+
2
x
+
3
)
0%
1
4
(
x
2
−
2
x
+
3
)
0%
1
2
(
x
2
−
2
x
+
3
)
0%
1
2
(
x
2
+
2
x
−
3
)
Explanation
(
x
3
+
2
x
2
+
3
x
)
÷
2
x
=
(
x
3
+
2
x
2
+
3
x
)
2
x
=
x
(
x
2
+
2
x
+
3
)
2
x
=
(
x
2
+
2
x
+
3
)
2
Divide the given polynomial by the given monomial.
8
(
x
3
y
2
z
2
+
x
2
y
3
z
2
+
x
2
y
2
z
3
)
÷
4
x
2
y
2
z
2
Report Question
0%
2
(
x
−
y
+
z
)
0%
2
(
x
+
y
−
z
)
0%
2
(
x
+
y
+
z
)
0%
4
(
x
+
y
+
z
)
Explanation
8
(
x
3
y
2
z
2
+
x
2
y
3
z
2
+
x
2
y
2
z
3
)
÷
4
x
2
y
2
z
2
=
8
(
x
3
y
2
z
2
+
x
2
y
3
z
2
+
x
2
y
2
z
3
)
4
x
2
y
2
z
2
=
8
x
2
y
2
z
2
(
x
+
y
+
z
)
4
x
2
y
2
z
2
=
2
(
x
+
y
+
z
)
Factorize
3
a
2
−
9
a
b
by taking common factors.
Report Question
0%
3
a
(
a
−
3
b
)
0%
3
a
(
a
−
b
)
0%
3
a
(
3
a
−
b
)
0%
3
a
(
a
+
b
)
Explanation
3
a
2
−
9
a
b
3
and
a
are common in the above two terms in the addition, so taking these as common.
3
a
2
−
9
a
b
=
3
a
(
a
−
3
b
)
Option A is correct.
Factorise:
5
t
+
25
t
2
Report Question
0%
5
t
(
1
+
5
t
)
0%
t
(
1
−
5
t
)
0%
5
t
(
1
−
5
t
)
0%
t
(
1
+
5
t
)
Explanation
5
t
+
25
t
2
=
5
t
(
1
+
5
t
)
Factorise:
a
b
−
4
a
c
Report Question
0%
a
(
b
+
4
c
)
0%
(
b
−
4
c
)
0%
a
(
b
−
4
c
)
0%
a
(
b
−
c
)
Explanation
The common variable in the two terms is
a
. So, we can take
a
common from both the terms as follows:
a
b
−
4
a
c
=
a
(
b
−
4
c
)
Hence, option C is correct.
Factorise:
4
a
+
12
b
Report Question
0%
4
(
a
+
3
b
)
0%
a
(
4
+
3
b
)
0%
4
a
(
1
+
3
b
)
0%
4
(
a
+
4
b
)
Explanation
4
a
+
12
b
=
(
2
×
2
×
a
)
+
(
2
×
2
×
3
×
b
)
=
(
2
×
2
)
(
a
+
3
×
b
)
=
4
(
a
+
3
b
)
Factorise
a
3
−
a
2
+
a
Report Question
0%
a
(
a
2
−
a
−
1
)
0%
a
(
a
2
+
a
+
1
)
0%
(
a
2
−
a
+
1
)
0%
a
(
a
2
−
a
+
1
)
Factorise:
4
x
−
8
y
Report Question
0%
4
(
x
−
4
y
)
0%
3
(
x
−
y
)
0%
4
(
3
x
−
2
y
)
0%
4
(
x
−
2
y
)
Explanation
4
x
−
8
y
=
4
(
x
−
2
y
)
Factorise
15
x
+
5
Report Question
0%
5
(
3
x
+
1
)
0%
5
(
x
+
1
)
0%
3
(
5
x
+
1
)
0%
15
(
x
+
1
)
Explanation
15
x
+
5
=
(
5
×
3
×
x
)
+
(
5
×
1
)
=
5
(
3
×
x
+
1
)
=
5
(
3
x
+
1
)
Factorise
9
b
−
12
x
Report Question
0%
2
(
3
b
+
4
x
)
0%
3
(
b
−
4
x
)
0%
3
(
3
b
−
4
x
)
0%
2
(
3
b
−
x
)
Explanation
F
a
c
t
o
r
i
z
i
n
g
9
b
−
12
x
,
3
∗
9
b
−
12
x
3
=
3
(
3
b
−
4
x
)
State whether True or False.
Divide:
−
4
a
2
b
3
−
8
a
b
2
+
6
a
b
by
−
2
a
b
, then answer is
2
a
b
2
+
4
b
−
3
.
Report Question
0%
True
0%
False
Explanation
⇒
−
4
a
2
b
3
−
8
a
b
2
+
6
a
b
−
2
a
b
In
−
4
a
2
b
3
−
8
a
b
2
+
6
a
b
we take
−
2
a
b
common then
⇒
−
2
a
b
(
2
a
b
2
+
4
b
−
3
)
−
2
a
b
⇒
2
a
b
2
+
4
b
−
3
State whether True or False.
Divide:
15
a
3
b
4
−
10
a
4
b
3
−
25
a
3
b
6
by
−
5
a
3
b
2
, then answer is
−
3
b
2
+
2
a
b
+
5
b
4
.
Report Question
0%
True
0%
False
Explanation
⇒
15
a
3
b
4
−
10
a
4
b
3
−
25
a
3
b
6
÷
−
5
a
3
b
2
⇒
15
a
3
b
4
−
10
a
4
b
3
−
25
a
3
b
6
−
5
a
3
b
2
we take
5
a
3
b
2
common
⇒
5
a
3
b
2
(
3
b
2
−
2
a
b
−
5
b
4
)
−
5
a
3
b
2
⇒
−
3
b
2
+
2
a
b
+
5
b
4
Factorise
4
a
2
−
8
a
b
Report Question
0%
4
a
(
a
+
2
b
)
0%
4
a
(
a
−
b
)
0%
4
a
(
a
−
2
b
)
0%
a
(
a
−
2
b
)
Explanation
Given expression is
4
a
2
−
8
a
b
.
Taking
4
a
common from both terms of
4
a
2
−
8
a
b
, we get:
4
a
(
a
−
2
b
)
Hence,
4
a
2
−
8
a
b
=
4
a
(
a
−
2
b
)
.
Factorise:
3
x
2
+
6
x
3
Report Question
0%
3
x
2
(
1
+
2
x
)
0%
3
x
2
(
1
−
2
x
)
0%
x
2
(
1
+
2
x
)
0%
3
x
2
(
1
+
x
)
Explanation
F
a
c
t
o
r
i
z
i
n
g
:
3
x
2
+
6
x
3
,
w
e
t
a
k
e
3
x
2
c
o
m
m
o
n
,
=
3
x
2
(
1
+
2
x
)
State whether True or False.
Factorization of
6
x
3
−
8
x
2
is
2
x
2
(
3
x
−
4
)
.
Report Question
0%
True
0%
False
Explanation
6
x
2
+
8
x
3
=
2
x
2
(
3
−
4
x
)
State whether True or False
Factorization of
36
x
2
y
2
−
30
x
3
y
3
+
48
x
3
y
2
is
6
x
2
y
2
(
6
−
5
x
y
+
8
x
)
.
Report Question
0%
True
0%
False
Explanation
F
a
c
t
o
r
i
z
i
n
g
36
x
2
y
2
−
30
x
3
y
3
+
48
x
3
y
2
,
=
6
x
2
y
2
(
6
−
5
x
y
+
8
x
)
State whether True or False.
Divide:
−
14
x
6
y
3
−
21
x
4
y
5
+
7
x
5
y
4
by
7
x
2
y
2
, then answer is
−
2
x
4
y
−
3
x
2
y
3
+
x
3
y
2
.
Report Question
0%
True
0%
False
Explanation
⇒
−
14
x
6
y
3
−
21
x
4
y
5
+
7
x
5
y
4
÷
7
x
2
y
2
⇒
−
14
x
6
y
3
−
21
x
4
y
5
+
7
x
5
y
4
7
x
2
y
2
We take
7
x
2
y
2
common
⇒
7
x
2
y
2
(
−
2
x
4
y
−
3
x
2
y
3
+
x
3
y
2
)
7
x
2
y
2
⇒
−
2
x
4
y
−
3
x
2
y
3
+
x
3
y
2
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 8 Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page