Loading [MathJax]/jax/output/CommonHTML/jax.js
MCQExams
0:0:2
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 8 Maths Factorisation Quiz 2 - MCQExams.com
CBSE
Class 8 Maths
Factorisation
Quiz 2
Factorize by taking out the common factors:
3
a
2
−
9
a
b
Report Question
0%
3
a
(
a
−
3
b
)
0%
3
a
(
a
+
3
b
)
0%
2
a
(
a
−
3
b
)
0%
2
a
(
a
+
3
b
)
Explanation
3
a
2
−
9
a
b
=
3
a
(
a
−
3
b
)
State whether True or False.
Factorization of
35
a
3
b
2
c
+
42
a
b
2
c
2
is
7
a
b
2
c
(
5
a
2
+
6
c
)
.
Report Question
0%
True
0%
False
Explanation
F
a
c
t
o
r
i
z
i
n
g
35
a
3
b
2
c
+
42
a
b
2
c
2
=
7
a
b
2
c
(
5
a
2
+
6
c
)
State whether True or False.
Divide:
9
x
3
y
−
15
x
2
y
2
−
6
x
4
y
3
by
3
x
2
y
, then answer is
3
x
−
5
y
−
2
x
2
y
2
.
Report Question
0%
True
0%
False
Explanation
⇒
9
x
3
y
−
15
x
2
y
2
−
6
x
4
y
3
÷
3
x
2
y
⇒
9
x
3
y
−
15
x
2
y
2
−
6
x
4
y
3
3
x
2
y
we take
3
x
2
y
common
⇒
3
x
2
y
(
3
x
−
5
y
−
2
x
2
y
2
)
3
x
2
y
⇒
3
x
−
5
y
−
2
x
2
y
2
Factorize :
y
2
+
100
y
Report Question
0%
y
(
y
+
100
)
0%
y
2
(
y
+
100
)
0%
y
(
y
2
+
100
)
0%
none of these
Explanation
We need to find value of
y
2
+
100
y
Taking
y
common, we get
y
(
y
+
100
)
.
Hence, option A is correct.
Factorise
−
16
z
+
20
z
3
Report Question
0%
−
z
(
4
−
5
z
3
)
0%
−
z
(
4
−
5
z
2
)
0%
4
z
(
4
−
5
z
2
)
0%
−
4
z
(
4
−
5
z
2
)
Explanation
−
16
z
+
20
z
3
=
−
4
×
4
×
z
+
4
×
5
×
z
×
z
×
z
=
4
z
(
5
z
2
−
4
)
Factorise
6
p
−
12
q
Report Question
0%
(
p
−
2
q
)
0%
6
(
p
−
2
q
)
0%
6
(
p
−
q
)
0%
(
p
−
q
)
Explanation
6
p
−
12
q
=
2
×
3
×
p
−
2
×
2
×
3
×
q
=
2
×
3
(
p
−
2
q
)
=
6
(
p
−
2
q
)
Factorise :
4
x
+
12
Report Question
0%
4
(
x
+
2
)
0%
4
(
x
+
3
)
0%
3
(
x
+
4
)
0%
none of these
Explanation
4
x
+
12
=
4
(
x
+
3
)
Factorise:
20
l
2
m
+
30
a
l
m
Report Question
0%
10
l
m
(
2
l
+
3
a
)
0%
10
l
m
(
l
+
3
a
)
0%
20
l
m
(
2
l
+
3
a
)
0%
30
l
m
(
2
l
+
a
)
Explanation
We have,
20
l
2
m
=
2
×
2
×
5
×
l
×
l
×
m
and,
30
a
l
m
=
3
×
2
×
5
×
a
×
l
×
m
The two terms have
2
,
5
,
l
and
m
as common factors
∴
20
l
2
m
+
30
a
l
m
=
(
2
×
2
×
5
×
l
×
l
×
m
)
+
(
3
×
2
×
5
×
a
×
l
×
m
)
=
2
×
5
×
l
×
m
×
(
2
×
l
×
+
3
×
a
)
=
10
l
m
(
2
l
+
3
a
)
Factorise:
7
x
−
42
Report Question
0%
7
x
0%
x
−
7
0%
7
0%
7
(
x
−
6
)
Explanation
7
x
−
42
=
7
(
x
−
6
)
Factorise:
7
a
2
+
14
a
Report Question
0%
7
a
(
a
+
2
)
0%
14
a
(
a
+
1
)
0%
7
a
(
a
−
2
)
0%
14
(
a
+
2
)
Explanation
Take
7
a
common from the given expression.
7
a
2
+
14
a
=
7
a
(
a
+
2
)
Factorise
x
2
y
z
+
x
y
2
z
+
x
y
z
2
Report Question
0%
y
z
(
x
+
y
−
z
)
0%
x
y
z
(
x
−
y
+
z
)
0%
x
y
z
(
x
+
y
+
z
)
0%
x
y
z
(
2
x
+
y
+
2
z
)
Explanation
Take
x
y
z
common from every term,
x
2
y
z
+
x
y
2
z
+
x
y
z
2
=
x
y
z
(
x
+
y
+
z
)
Factorise
5
x
2
y
−
15
x
y
2
Report Question
0%
2
x
y
(
2
x
−
15
y
)
0%
5
y
(
x
−
15
y
)
0%
5
x
y
(
x
−
3
y
)
0%
x
y
(
5
x
−
3
y
)
Explanation
5
x
2
y
−
15
x
y
2
=
5
×
x
×
x
×
y
−
5
×
3
×
x
×
y
×
y
=
5
x
y
(
x
−
3
y
)
Factorise
−
4
a
2
+
4
a
b
−
4
c
a
Report Question
0%
−
a
(
a
−
b
+
c
)
0%
−
4
a
(
a
−
b
+
c
)
0%
−
4
(
2
a
−
b
+
c
)
0%
−
4
a
(
2
a
−
b
+
2
c
)
Explanation
We have,
4
a
2
=
2
×
2
×
a
×
a
,
4
a
b
=
2
×
2
×
a
×
b
and,
4
c
a
=
2
×
2
×
c
×
a
The three terms have 2, 2 and a as common facotrs
−
4
a
2
+
4
a
b
−
4
c
a
=
−
(
2
×
2
×
a
×
a
)
+
(
2
×
2
×
a
×
b
)
−
(
2
×
2
×
c
×
a
)
=
2
×
2
×
a
×
(
−
a
+
b
−
c
)
=
4
a
(
−
a
+
b
−
c
)
=
−
4
a
(
a
−
b
+
c
)
Factorise:
15
x
y
−
6
x
+
5
y
−
2
Report Question
0%
(
x
−
1
)
(
y
+
2
)
0%
(
x
+
1
)
(
y
−
2
)
0%
(
3
x
+
1
)
(
5
y
−
2
)
0%
(
3
x
−
1
)
(
5
y
+
2
)
Explanation
15
x
y
−
6
x
+
5
y
−
2
=
15
x
y
+
5
y
−
6
x
−
2
=
5
y
(
3
x
+
1
)
−
2
(
3
x
+
1
)
=
(
3
x
+
1
)
(
5
y
−
2
)
Factorise the expression:
7
p
2
+
21
q
2
Report Question
0%
7
(
p
2
+
q
2
)
0%
(
p
2
−
3
q
2
)
0%
7
(
p
2
+
3
q
2
)
0%
(
p
q
2
+
3
q
2
)
Explanation
7
p
2
+
21
q
2
=
7
×
p
×
p
+
7
×
3
×
q
×
q
=
7
(
p
2
+
3
q
2
)
Factorise the expression:
a
x
2
+
b
x
Report Question
0%
x
(
a
x
+
b
)
0%
x
(
a
+
b
)
0%
x
(
x
+
b
a
)
0%
(
a
x
+
b
)
Explanation
a
x
2
+
b
x
=
x
(
a
x
+
b
)
Factorise:
a
x
+
b
x
−
a
y
−
b
y
Report Question
0%
(
x
+
y
)
(
a
+
b
)
0%
(
x
−
a
)
(
a
+
y
)
0%
(
x
−
y
)
(
a
+
b
)
0%
(
x
+
a
)
(
a
−
y
)
Explanation
a
x
+
b
x
−
a
y
−
b
y
=
(
a
x
+
b
x
)
−
(
a
y
+
b
y
)
[Grouping the terms]
=
(
a
+
b
)
x
−
(
a
+
b
)
y
=
(
a
+
b
)
(
x
−
y
)
[Taking (a + b) common]
Factorise the expression:
2
x
3
+
2
x
y
2
+
2
x
z
2
Report Question
0%
(
x
2
+
y
2
−
z
2
)
0%
2
x
(
x
2
−
y
2
+
z
2
)
0%
(
x
2
+
y
2
+
z
2
)
0%
2
x
(
x
2
+
y
2
+
z
2
)
Explanation
2
x
3
+
2
x
y
2
+
2
x
z
2
=
2
×
x
×
x
×
x
+
2
×
x
×
y
×
y
+
2
×
x
×
z
×
z
=
2
x
(
x
2
+
y
2
+
z
2
)
Factorise:
15
p
q
+
15
+
9
q
+
25
p
Report Question
0%
(
5
+
3
q
)
(
3
+
5
p
)
0%
q
(
3
+
5
p
)
0%
(
5
−
3
q
)
(
5
p
)
0%
(
5
−
3
q
)
(
3
+
5
p
)
Explanation
15
p
q
+
15
+
9
q
+
25
p
=
15
p
q
+
9
q
+
25
p
+
15
=
3
q
(
5
p
+
3
)
+
5
(
5
p
+
3
)
=
(
5
p
+
3
)
(
3
q
+
5
)
Factorise:
x
2
+
x
y
+
8
x
+
8
y
Report Question
0%
(
x
+
8
)
(
x
−
y
)
0%
(
x
+
8
)
(
x
−
8
)
0%
(
x
−
y
)
(
x
+
y
)
0%
(
x
+
8
)
(
x
+
y
)
Explanation
x
2
+
x
y
+
8
x
+
8
y
=
(
x
2
+
x
y
)
+
(
8
x
+
8
y
)
=
x
(
x
+
y
)
+
8
(
x
+
y
)
=
(
x
+
y
)
(
x
+
8
)
[Taking
(
x
+
y
)
common]
Factorize:
2
x
+
6
Report Question
0%
2
(
x
+
6
)
0%
2
(
x
+
3
)
0%
x
+
3
0%
2
x
+
3
Explanation
2
x
+
6
=
(
2
×
x
)
+
(
2
×
3
)
=
2
(
x
+
3
)
Divide the given polynomial by the given monomial.
(
3
y
8
−
4
y
6
+
5
y
4
)
÷
y
4
Report Question
0%
3
y
4
−
4
y
2
+
5
0%
3
y
3
−
4
y
2
−
5
0%
3
y
3
−
4
y
2
+
5
0%
3
y
4
−
y
2
+
5
Explanation
(
3
y
8
4
y
6
+
5
y
4
)
÷
y
4
3
y
8
=
3
×
y
×
y
×
y
×
y
×
y
×
y
×
y
×
y
4
y
6
=
4
×
y
×
y
×
y
×
y
×
y
×
y
5
y
4
=
5
×
y
×
y
×
y
×
y
=
(
3
×
y
×
y
×
y
×
y
×
y
×
y
×
y
×
y
)
−
(
4
×
y
×
y
×
y
×
y
×
y
×
y
)
+
(
5
×
y
×
y
×
y
×
y
)
y
4
=
y
4
[
(
3
×
y
×
y
×
y
×
y
)
−
(
4
×
y
×
y
)
+
(
5
)
]
y
4
=
3
y
4
−
4
y
2
+
5
Factorise:
a
b
2
−
b
c
2
−
a
b
+
c
2
Report Question
0%
(
b
−
1
)
(
a
b
−
c
2
)
0%
(
b
+
1
)
(
2
a
b
−
c
2
)
0%
(
b
−
2
)
(
a
b
−
c
2
)
0%
(
b
−
2
)
(
a
b
−
a
c
2
)
Explanation
a
b
2
−
b
c
2
−
a
b
+
c
2
=
a
b
2
−
a
b
−
b
c
2
+
c
2
=
a
b
(
b
−
1
)
−
c
2
(
b
−
1
)
=
(
b
−
1
)
(
a
b
−
c
2
)
Factorization means , writing an expression as a product of its......
Report Question
0%
factors
0%
multiples
0%
HCF
0%
LCM
Explanation
Factorization means writing an expression as a product of its factors.
Which of the following expression is correct?
Report Question
0%
5
(
x
−
6
)
=
5
x
−
6
0%
4
x
+
7
x
=
11
x
2
0%
x
+
4
x
+
5
x
=
8
x
0%
x
+
4
x
2
=
x
(
1
+
4
x
)
Explanation
x
+
4
x
2
=
(
x
)
+
(
4
×
x
×
x
)
=
x
(
1
+
4
×
x
)
=
x
(
1
+
4
x
)
∴
The statement
x
+
4
x
2
=
x
(
1
+
4
x
)
is correct.
Factorise:
5
x
−
115
Report Question
0%
x
−
115
0%
5
x
−
23
0%
5
(
x
−
23
)
0%
5
(
x
−
3
)
Explanation
5
x
−
115
=
(
5
×
x
)
−
(
5
×
23
)
=
5
(
x
−
23
)
Factorise:
x
3
+
4
x
2
+
5
x
Report Question
0%
x
(
x
2
+
4
x
+
5
)
0%
x
(
x
2
+
4
x
+
5
x
)
0%
x
3
+
4
x
+
5
0%
x
2
+
4
x
+
5
Explanation
x
3
+
4
x
2
+
5
x
=
x
(
x
2
+
4
x
+
5
)
Which of the following statements is true ?
Report Question
0%
6
x
+
3
x
=
9
x
2
0%
4
(
x
+
5
)
=
4
x
+
5
0%
4
(
x
+
5
)
=
4
x
+
20
0%
x
(
4
x
+
5
)
=
4
x
2
+
5
Explanation
4
(
x
+
5
)
=
4
×
x
+
4
×
5
=
4
x
+
20
∴
4
(
x
+
5
)
=
4
x
+
20
is a correct statement.
Simplify:
12
a
b
3
−
6
a
2
b
3
a
b
(given that
a
b
≠
0
)
Report Question
0%
6
b
2
−
a
0%
2
b
2
−
3
a
0%
4
b
2
−
2
a
0%
3
b
2
−
2
a
Explanation
(
2
b
2
−
a
)
or
4
b
2
−
2
a
: First, factor out common terms in the numerator. Then, cancel terms in both the numerator and denominator:
6
a
b
(
2
b
2
−
a
)
3
a
b
=
2
(
2
b
2
−
a
)
or
4
b
2
−
2
a
Factorise :
5
x
y
+
25
x
y
z
Report Question
0%
5
x
y
(
1
+
5
x
y
z
)
0%
5
x
y
(
1
+
z
)
0%
5
x
y
(
1
+
5
z
)
0%
5
x
y
z
Explanation
5
x
y
+
25
x
y
z
=
(
5
×
x
×
y
)
+
(
5
×
5
×
x
×
y
×
z
)
=
5
x
y
(
1
+
5
z
)
0:0:2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 8 Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page