Loading [MathJax]/jax/output/CommonHTML/jax.js
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 8 Maths Factorisation Quiz 3 - MCQExams.com
CBSE
Class 8 Maths
Factorisation
Quiz 3
Factorise :
13
a
+
26
Report Question
0%
a
+
13
0%
a
+
2
0%
13
(
a
+
26
)
0%
13
(
a
+
2
)
Explanation
13
a
+
26
=
(
13
×
a
)
+
(
13
×
2
)
=
13
(
a
+
2
)
Factorise :
8
x
−
64
Report Question
0%
8
(
x
−
9
)
0%
8
x
−
8
0%
8
(
x
−
6
)
0%
8
(
x
−
8
)
Explanation
8
x
−
64
=
(
8
×
x
)
−
(
8
×
8
)
=
8
(
x
−
8
)
Which of the following statements is true?
Report Question
0%
5
x
+
3
=
5
(
x
+
3
)
0%
5
x
+
3
x
2
=
x
(
5
+
3
x
)
0%
5
x
+
3
x
2
=
8
x
(
x
+
x
2
)
0%
5
x
+
3
=
5
(
1
+
3
x
)
Explanation
5
x
+
3
x
2
=
(
5
×
x
)
+
(
3
×
x
×
x
)
=
x
(
5
+
3
x
)
∴
The statement
5
x
+
3
x
2
=
x
(
5
+
3
x
)
is true.
________ is a method of writing numbers as the product of their factors or divisors.
Report Question
0%
Polynomial
0%
Factorisation
0%
Division algorithm
0%
Quadratic equation
Explanation
Factorisation is a method of writing numbers as the product of their factors or divisors.
Example:
4
x
2
+
2
x
is a factor
2
x
(
2
x
+
1
)
By multiplying the factor we get the original number.
Factorize
x
4
−
x
3
−
x
2
Report Question
0%
x
(
x
2
−
x
−
1
)
0%
x
(
x
−
x
2
−
x
3
)
0%
x
(
x
3
−
x
2
)
0%
x
2
(
x
2
−
x
−
1
)
Explanation
Given,
x
4
−
x
3
−
x
2
Here all the terms are unlike.
Only
x
2
is common from all, so
⇒
x
2
(
x
2
−
x
−
1
)
The expression
x
y
−
x
z
is equivalent to:
Report Question
0%
x
(
y
−
z
)
0%
y
(
z
−
x
)
0%
x
(
y
+
z
)
0%
z
(
−
x
+
y
)
Explanation
x
y
−
x
z
=
x
(
y
−
z
)
A number besides a bracket means the number is multiplied with each term in the bracket.
If
30
x
3
+
45
x
2
−
10
x
is divided by
5
x
, find the resulting coefficient of
x
Report Question
0%
6
0%
9
0%
25
0%
40
Explanation
The value of
30
x
3
+
45
x
2
−
10
x
5
x
=
5
x
(
6
x
2
+
9
x
−
10
)
5
x
=
6
x
2
+
9
x
−
10
In resultant equation, coefficient of
x
is
9
.
The expression
a
b
c
+
x
y
c
is equivalent to:
Report Question
0%
c
(
a
b
+
x
y
)
0%
c
(
a
b
−
x
y
)
0%
x
(
a
b
+
c
y
)
0%
x
(
a
b
−
c
y
)
Explanation
a
b
c
+
x
y
c
=
c
(
a
b
+
x
y
)
.....
c
is common to both the terms
A number besides a bracket means the number is multiplied with each term in the bracket.
(
49
x
2
y
z
+
35
p
)
÷
7
=
Report Question
0%
7
x
2
y
z
−
35
p
0%
7
x
2
y
z
+
35
p
0%
7
x
2
y
z
−
5
p
0%
7
x
2
y
z
+
5
p
Explanation
(
49
x
2
y
z
+
35
p
)
÷
7
=
(
49
x
2
y
z
+
35
p
)
×
1
7
=
49
7
x
2
y
z
+
35
7
p
=
7
x
2
y
z
+
5
p
Factorise completely by removing a monomial factor.
3
y
2
−
7
y
Report Question
0%
7y(3y-1)
0%
y(3y-7)
0%
3y(y-7)
0%
7(3y-1)
Explanation
3
y
2
−
7
y
=
y
(
3
y
−
7
)
.
One of the factor of
(
25
x
2
−
1
)
+
(
1
+
5
x
2
)
is
Report Question
0%
5
+
x
0%
5
−
x
0%
5
x
−
1
0%
10
x
Explanation
Given,
(
25
x
2
−
1
)
+
(
1
+
5
x
2
)
=
30
x
2
=
(
3
x
)
(
10
x
)
Clearly,
10
x
is factor of
(
25
x
2
−
1
)
+
(
1
+
5
x
2
)
Option D is correct.
(
3
x
2
−
x
)
÷
(
−
x
)
is equal to
Report Question
0%
3
x
+
1
0%
−
3
x
−
1
0%
−
3
x
+
1
0%
3
x
−
1
Explanation
(
3
x
2
−
x
)
÷
(
−
x
)
By separating denominators, we get
=
3
x
2
−
x
+
(
−
x
)
(
−
x
)
=
−
3
x
+
1
Hence, final result after given operation is
−
3
x
+
1
.
(
6
a
b
−
3
a
b
c
+
9
a
b
c
d
)
÷
(
−
1
3
a
b
)
is equal to
Report Question
0%
2
+
c
+
3
c
d
0%
−
2
+
c
−
3
c
d
0%
−
18
+
9
c
−
27
c
d
0%
18
−
9
c
−
27
c
d
Explanation
6
a
b
−
3
a
b
c
+
9
a
b
c
d
−
1
3
a
b
By separating denominators, we get
=
6
a
b
−
1
3
a
b
+
(
−
3
a
b
c
)
−
1
3
a
b
+
9
a
b
c
d
−
1
3
a
b
=
6
a
b
a
b
×
(
−
3
)
+
(
−
3
a
b
c
)
a
b
×
(
−
3
)
+
(
9
a
b
c
d
)
a
b
×
(
−
3
)
=
−
18
+
9
c
−
27
c
d
Hence final value after given operation is
−
18
+
9
c
−
27
c
d
Factorize the below equation:
b
(
a
+
d
)
−
c
(
a
+
d
)
Report Question
0%
(
a
−
c
)
(
b
+
d
)
0%
(
b
+
c
)
(
a
−
d
)
0%
(
b
−
c
)
(
a
+
d
)
0%
None of these
Explanation
The common factor between
b
(
a
+
d
)
and
c
(
a
+
d
)
is
(
a
+
d
)
that is the HCF of
b
(
a
+
d
)
and
c
(
a
+
d
)
is
(
a
+
d
)
.
Therefore, we take
(
a
+
d
)
as a common factor in the expression
b
(
a
+
d
)
−
c
(
a
+
d
)
as shown below:
b
(
a
+
d
)
−
c
(
a
+
d
)
=
(
a
+
d
)
(
b
−
c
)
Hence, the factorization of
b
(
a
+
d
)
−
c
(
a
+
d
)
is
(
b
−
c
)
(
a
+
d
)
.
Factorise :
6
x
y
2
+
4
x
2
y
Report Question
0%
2
x
y
(
3
x
+
y
)
0%
x
y
(
3
x
+
2
y
)
0%
2
x
y
(
2
x
+
3
y
)
0%
none of these
Explanation
The common factor between
6
x
y
2
and
4
x
2
y
is
2
x
y
that is the HCF of
6
x
y
2
and
4
x
2
y
is
2
x
y
.
Therefore, we take
2
x
y
as a common factor in the expression
6
x
y
2
+
4
x
2
y
as shown below:
6
x
y
2
+
4
x
2
y
=
2
x
y
(
2
x
+
3
y
)
Hence, the factors of
6
x
y
2
+
4
x
2
y
are
2
x
y
and
(
2
x
+
3
y
)
.
Factorize :
4
a
x
+
4
a
y
Report Question
0%
4
a
(
x
+
y
)
0%
4
(
x
+
y
)
0%
4
a
(
x
−
y
)
0%
4
(
x
−
y
)
Explanation
The common factor between
4
a
x
and
4
a
y
is
4
a
that is the HCF of
4
a
x
and
4
a
y
is
4
a
.
Therefore, we take
4
a
as a common factor in the expression
4
a
x
+
4
a
y
as shown below:
4
a
x
+
4
a
y
=
4
a
(
x
+
y
)
Hence, the factorization of
4
a
x
+
4
a
y
is
4
a
(
x
+
y
)
.
Simplify :
10
a
2
−
15
b
2
+
20
c
2
Report Question
0%
5
(
2
a
2
−
3
b
2
+
4
c
2
)
0%
5
(
2
a
−
3
b
2
+
4
c
2
)
0%
5
(
10
a
2
−
3
b
2
+
4
c
2
)
0%
5
(
2
a
2
+
3
b
2
+
4
c
2
)
Explanation
10
a
2
−
15
b
2
+
20
c
2
The common factor
=
5
Thus,
10
a
2
−
15
b
2
+
20
c
2
=
5
(
2
a
2
−
3
b
2
+
4
c
2
)
What is the possible expression for the dimension of the cuboid whose volume is given below?
V
o
l
u
m
e
:
3
x
2
−
12
x
Report Question
0%
4
×
x
×
(
x
−
4
)
0%
3
×
x
×
(
x
−
4
)
0%
4
×
x
×
(
x
+
4
)
0%
3
×
x
×
(
x
+
4
)
Explanation
Given,
V
o
l
u
m
e
=
3
x
2
−
12
x
=
3
x
(
x
−
4
)
=
3
×
x
×
(
x
−
4
)
∴
Possible dimensions are 3 units, x units and (x-4) units
Factorise
a
x
2
y
+
b
x
y
2
+
c
x
y
z
Report Question
0%
x
(
a
x
+
b
y
+
c
z
)
0%
y
(
a
x
−
b
y
−
c
z
)
0%
x
y
(
a
x
+
b
y
+
c
z
)
0%
x
y
(
a
+
b
y
+
c
z
)
Explanation
We have,
a
x
2
y
=
a
×
x
×
x
×
y
b
x
y
2
=
b
×
x
×
y
×
y
and,
c
x
y
z
=
c
×
x
×
y
×
z
The three terms have x and y as common factors
∴
a
x
2
y
+
b
x
y
2
+
c
x
y
z
=
(
a
×
x
×
x
×
y
)
+
(
b
×
x
×
y
×
y
)
+
(
c
×
x
×
y
×
z
)
=
x
×
y
×
(
a
×
x
+
b
×
y
+
c
×
z
)
=
x
y
(
a
x
+
b
y
+
c
z
)
Divide:
8
x
2
y
2
−
6
x
y
2
+
10
x
2
y
3
by
2
x
y
Report Question
0%
4
y
−
3
y
+
5
x
y
3
0%
4
x
y
−
3
y
−
5
x
y
3
0%
4
x
−
3
y
−
5
x
y
2
0%
4
x
y
−
3
y
+
5
x
y
2
Explanation
8
x
2
y
2
−
6
x
y
2
+
10
x
2
y
3
÷
2
x
y
8
x
2
y
2
−
6
x
y
2
+
10
x
2
y
3
2
x
y
=
2
x
y
(
4
x
y
−
6
y
+
10
x
y
2
)
2
x
y
=
4
x
y
−
3
y
+
5
x
y
2
Which of the following is factorization of
(
−
56
m
n
p
2
+
7
m
n
p
)
.
Report Question
0%
7
m
n
p
(
−
8
p
+
1
)
0%
7
m
n
p
(
8
p
+
1
)
0%
7
m
n
p
(
8
p
−
1
)
0%
None of these
Explanation
−
56
m
n
p
2
+
7
m
n
p
=
−
7
×
8
m
n
p
2
+
7
m
n
p
=
7
m
n
p
(
−
8
p
+
1
)
Factorise :
121
a
c
−
16
a
2
b
2
Report Question
0%
a
(
121
c
−
16
a
b
2
)
0%
a
(
121
c
+
16
a
b
2
)
0%
a
(
121
c
−
16
a
c
2
)
0%
none of these
Explanation
121
a
c
−
16
a
2
b
2
=
121
×
a
×
c
−
16
×
a
×
a
×
b
×
b
=
a
(
121
c
−
16
a
b
2
)
Which of the following is an example of factorisation?
Report Question
0%
x
2
+
2
x
=
x
(
x
+
2
)
0%
x
2
+
2
x
=
x
(
x
+
1
)
0%
x
2
+
2
x
=
x
(
x
+
3
)
0%
None of the above
Explanation
The common factor between
x
2
and
2
x
is
x
that is the HCF of
x
2
and
2
x
is
x
.
Therefore, we take
x
as a common factor in the expression
x
2
+
2
x
as shown below:
x
2
+
2
x
=
x
(
x
+
2
)
Hence, the factorization of
x
2
+
2
x
is
x
(
x
+
2
)
.
Factorise
4
m
3
n
2
+
12
m
2
n
2
+
18
m
4
n
3
Report Question
0%
m
3
n
3
(
m
+
3
m
n
+
4
m
2
n
)
0%
m
2
n
2
(
5
m
+
2
n
+
6
m
2
n
)
0%
2
m
2
n
2
(
2
m
+
6
+
9
m
2
n
)
0%
None of these
Explanation
The factorization of
4
m
3
n
2
+
12
m
2
n
2
+
18
m
4
n
3
is
2
m
2
n
2
(
2
m
+
6
+
9
m
2
n
)
....Taking
2
m
2
n
2
common
Factorise :
5
m
n
+
15
m
n
p
Report Question
0%
5
m
n
(
1
+
3
p
)
0%
3
m
n
(
1
+
5
p
)
0%
5
m
n
(
1
−
3
p
)
0%
none of these
Explanation
The common factor between
5
m
n
and
15
m
n
p
is
5
m
n
that is the HCF of
5
m
n
and
15
m
n
p
is
5
m
n
.
Therefore, we take
5
m
n
as a common factor in the expression
5
m
n
+
15
m
n
p
as shown below:
5
m
n
+
15
m
n
p
=
5
m
n
(
1
+
3
p
)
Hence, the factorization of
5
m
n
+
15
m
n
p
is
5
m
n
(
1
+
3
p
)
.
Factorise
10
a
2
−
15
b
2
+
20
c
2
Report Question
0%
5
(
a
2
−
3
b
2
+
4
c
2
)
0%
10
(
2
a
2
+
3
b
2
−
4
c
2
)
0%
5
(
2
a
2
−
3
b
2
+
4
c
2
)
0%
10
(
a
2
−
b
2
+
4
c
2
)
Explanation
We have,
10
a
2
=
2
×
5
×
a
×
a
,
15
b
2
=
3
×
5
×
b
×
b
and,
20
c
2
=
2
×
2
×
5
×
c
×
c
The three terms have 5 as a common factor
10
a
2
−
15
b
2
+
20
c
2
=
(
2
×
5
×
a
×
a
)
−
(
3
×
5
×
b
×
b
)
+
(
2
×
2
×
5
×
c
×
c
)
=
5
×
(
2
×
a
×
a
−
3
×
b
×
b
+
4
×
c
×
c
)
=
5
(
2
a
2
−
3
b
2
+
4
c
2
)
Evaluate
8
(
x
3
y
2
z
2
+
x
2
y
3
z
2
+
x
2
y
2
z
3
)
÷
4
x
2
y
2
z
2
Report Question
0%
2
(
x
+
y
+
z
)
0%
2
(
x
−
y
+
z
)
0%
2
(
x
+
y
−
z
)
0%
2
(
x
+
2
y
+
2
z
)
Explanation
8
(
x
3
y
2
z
2
+
x
2
y
3
z
2
+
x
2
y
2
z
3
)
÷
4
x
2
y
2
z
2
=
8
(
x
3
y
2
z
2
+
z
2
y
3
z
2
+
x
2
y
2
z
3
)
4
x
2
y
2
z
2
=
8
×
x
2
y
2
z
2
(
x
+
y
+
z
)
4
x
2
y
2
z
2
=
2
(
x
+
y
+
z
)
Evaluate
(
p
3
q
6
−
p
6
q
3
)
÷
p
3
q
3
Report Question
0%
q
3
+
p
3
0%
q
3
−
p
3
0%
q
2
−
p
2
0%
q
2
+
p
2
Explanation
(
p
3
q
6
−
p
6
q
3
)
÷
p
3
q
3
=
p
3
q
6
−
p
6
q
3
p
3
q
3
=
p
3
q
3
(
q
3
−
p
3
)
p
3
q
3
=
q
3
−
p
3
Hence, option
B
is correct.
Evaluate:
(
21
x
−
35
)
÷
7
Report Question
0%
2
x
−
5
0%
4
x
−
5
0%
3
x
−
5
0%
5
x
−
3
Explanation
(
21
x
−
35
)
÷
7
=
21
x
−
35
7
=
7
(
3
x
−
5
)
7
=
3
x
−
5
Simplify:
(
8
m
2
−
9
m
)
÷
3
m
Report Question
0%
1
3
(
8
m
−
9
)
0%
8
m
−
9
0%
1
3
(
8
m
−
3
)
0%
5
m
−
3
Explanation
(
8
m
2
−
9
m
)
÷
3
m
=
8
m
2
−
9
m
3
m
=
m
(
8
m
−
9
)
3
m
=
8
m
−
9
3
=
1
3
(
8
m
−
9
)
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 8 Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page