CBSE Questions for Class 8 Maths Factorisation Quiz 4 - MCQExams.com

Factorise:
$$x^3 -3x^2+x-3$$
  • $$(x^2 + 7)(x-3)$$
  • $$(x^2 + 1)(x-3)$$
  • $$(x^2 - 1)(x-2)$$
  • $$(x^2 + 7)(x-2)$$
Factorise:
$$ab^2 + (a-1)b -1$$
  • $$(b+ 1) (a-1)$$
  • $$(b+ 1) (b-1)$$
  • $$(b+ 1) (ab-1)$$
  • $$(b- 1) (ab-1)$$
Factorise: $$9x^3-6x^2+ 12x$$
  • $$3x (3x^2-2x + 4)$$
  • $$x (3x^2-2x + 4)$$
  • $$x (3x^2-2x - 4)$$
  • $$3x (3x^2-x + 7)$$
Factorise:
$$12x + 15$$
  • $$3(4x + 5)$$
  • $$(4x + 5)$$
  • $$3(4x - 5)$$
  • None of the Above
Factorise:
$$6a(a -2b) + 5b(a -2b)$$
  • $$(a-b) (6a + 5b)$$
  • $$(a-2b) (6a + 5b)$$
  • $$(a-2b) (3a + 5b)$$
  • $$(a-b) (3a + 5b)$$
Evaluate: $$\displaystyle \left( { 7a }^{ 2 }-5a \right) \div 5a$$
  • $$\displaystyle 7a-1$$
  • $$\displaystyle 7a-5$$
  • $$\displaystyle \frac { 1 }{ 5 } \left( 7a-5 \right) $$
  • $$\displaystyle \frac { 1 }{ 5 } \left( 7a-1 \right) $$
Evaluate: $$\displaystyle ( 6{ x }^{ 2 }-4x) \div 2x$$
  • $$\displaystyle 2x-3$$
  • $$\displaystyle 3x-2$$
  • $$\displaystyle 3{ x }^{ 2 }-2$$
  • $$\displaystyle 12x-8$$
Simplify: $$\displaystyle \left( 12a-36 \right) \div 6$$
  • $$\displaystyle 2a+6$$
  • $$\displaystyle a-3$$
  • $$\displaystyle 2a-6$$
  • $$\displaystyle a+3$$
Simplify: $$\displaystyle 9\left( { a }^{ 4 }{ b }^{ 6 }-{ a }^{ 6 }{ b }^{ 4 } \right) \div 3{ a }^{ 4 }{ b }^{ 4 }$$
  • $$\displaystyle 3(b-a)$$
  • $$\displaystyle 3(a-b)$$
  • $$\displaystyle 3\left( { a }^{ 2 }-{ b }^{ 2 } \right) $$
  • $$\displaystyle 3\left( { b }^{ 2 }-{ a }^{ 2 } \right) $$
Divide: $$\displaystyle \left( { x }^{ 8 }{ y }^{ 7 }{ z }^{ 6 }-{ z }^{ 6 }{ y }^{ 7 }{ x }^{ 8 } \right) $$ by $$\displaystyle { y }^{ 7 }{ x }^{ 8 }{ z }^{ 6 }$$
  • $$\displaystyle -1$$
  • $$\displaystyle 1$$
  • $$\displaystyle 0$$
  • $$\dfrac 12$$
Evaluate: $$\displaystyle \left( 4{ x }^{ 8 }-{ 5x }^{ 6 }+{ 6x }^{ 4 } \right) \div { x }^{ 4 }$$
  • $$\displaystyle { 4x }^{ 4 }-{ 5x }^{ 10 }+6x$$
  • $$\displaystyle { 4x }^{ 5 }-{ 5x }^{ 3 }+6x$$
  • $$\displaystyle { 4x }^{ 3 }-5x+6$$
  • $$\displaystyle { 4x }^{ 4 }-{ 5x }^{ 2 }+6$$
Simplify: $$\displaystyle \left( { a }^{ 2 }{ b }^{ 2 }{ c }^{ 3 }-{ a }^{ 2 }{ b }^{ 2 }{ c }^{ 3 }+{ a }^{ 2 }{ b }^{ 2 }{ c }^{ 3 } \right) \div { a }^{ 2 }{ b }^{ 2 }{ c }^{ 3 }$$
  • $$\displaystyle 1$$
  • $$\displaystyle -1$$
  • $$\displaystyle 0$$
  • None of these
Divide: $$\displaystyle \left( -16{ x }^{ 6 }-24{ x }^{ 4 } \right) $$ by $$\displaystyle \left( -{ 8x }^{ 3 } \right) $$
  • $$\displaystyle { 2x }^{ 3 }+3x$$
  • $$\displaystyle { 2x }^{ 2 }+3$$
  • $$\displaystyle -{ 2x }^{ 3 }-3x$$
  • $$\displaystyle -{ 2x }^{ 2 }-3$$
Evaluate : $$\displaystyle 21{ x }^{ 3 }{ y }^{ 3 }+35{ x }^{ 4 }{ y }^{ 2 }-56{ x }^{ 2 }{ y }^{ 4 }\div -7{ x }^{ 2 }{ y }^{ 2 }$$
  • $$\displaystyle -5{ x }^{ 2 }+3xy+8{ y }^{ 2 }$$
  • $$\displaystyle 8{ y }^{ 2 }-3xy-5{ x }^{ 2 }$$
  • $$\displaystyle 5{ x }^{ 2 }+3xy-8{ y }^{ 2 }$$
  • $$\displaystyle 5{ x }^{ 2 }-3xy+8{ y }^{ 2 }$$
Factorisation of the expression $$\displaystyle -15x+5{ x }^{ 3 }$$ gives result as
  • $$\displaystyle 5x( 3-{ x }^{ 2 }) $$
  • $$\displaystyle 5x( { x }^{ 2 }-3) $$
  • $$\displaystyle -5x( { x }^{ 2 }-3 ) $$
  • $$\displaystyle x( { x }^{ 2 }-3) $$
Divide: $$\displaystyle 8\left( { x }^{ 3 }{ y }^{ 2 }{ z }^{ 2 }+{ x }^{ 2 }{ y }^{ 3 }{ z }^{ 2 }+{ x }^{ 2 }{ y }^{ 2 }{ z }^{ 3 } \right) \div 2{ x }^{ 2 }{ y }^{ 2 }{ z }^{ 2 }$$
  • $$\displaystyle 4(y+z)$$
  • $$\displaystyle 4(x)$$
  • $$\displaystyle 4(x+y+z)$$
  • $$\displaystyle 4x+4y+z$$
Find the value of $$\displaystyle \left( { 3x }^{ 3 }+{ 2x }^{ 2 }+x \right) \div 4x$$
  • $$\displaystyle { 3x }^{ 2 }+2x+1$$
  • $$\displaystyle \frac { 1 }{ 4 } \left( { 3x }^{ 2 }+2x+1 \right) $$
  • $$\displaystyle { 3x }^{ 2 }+2x+\frac { 1 }{ 4 } $$
  • $$\displaystyle 3x+2$$
Find the value of $$\displaystyle \left( { 7a }^{ 6 }-8{ a }^{ 5 }+9{ a }^{ 4 } \right) \div { a }^{ 3 }$$
  • $$\displaystyle { 7a }^{ 3 }-{ 8a }^{ 2 }+9a$$
  • $$\displaystyle { 7a }^{ 2 }-8a+9$$
  • $$\displaystyle { 7a }^{ 4 }-{ 8a }^{ 2 }+9a$$
  • $$\displaystyle { 7a }^{ 2 }-{ 8a }^{ 2 }+9a$$
Solve: $$\displaystyle 3{ x }^{ 3 }-15{ x }^{ 2 }+21x\div 3x$$
  • $$\displaystyle x+5+7x$$
  • $$\displaystyle { x }^{ 2 }+5x+7$$
  • $$\displaystyle 3{ x }^{ 2 }-5x+7$$
  • $$\displaystyle { x }^{ 2 }-5x+7$$
Factorise : $$\displaystyle 40{ m }^{ 2 }n+50mn$$
  • $$\displaystyle 10mn(4mn+5n)$$
  • $$\displaystyle 10mn(2m+5)$$
  • $$\displaystyle 10mn(2m+10)$$
  • $$\displaystyle 10mn(4m+5)$$
Simplify: $$\displaystyle \left( 16{ x }^{ 3 }{ y }^{ 2 }{ z }^{ 2 }+16{ x }^{ 2 }{ y }^{ 2 }{ z }^{ 3 }+16{ x }^{ 2 }{ y }^{ 3 }{ z }^{ 2 } \right) \div 8xyz$$
  • $$\displaystyle 2\left( { x }^{ 2 }yz+xy{ z }^{ 2 }+x{ y }^{ 2 }z-xyz \right) $$
  • $$\displaystyle \left( { x }^{ 2 }yz+xy{ z }^{ 2 }+x{ y }^{ 2 }z \right) $$
  • $$\displaystyle 2{ x }^{ 2 }yz+2xy{ z }^{ 2 }+2x{ y }^{ 2 }z$$
  • $$\displaystyle 2{ x }^{ 2 }{ y }^{ 2 }z+2x{ y }^{ 2 }{ z }^{ 2 }+2{ x }^{ 2 }y{ z }^{ 2 }-xyz$$
Factorisation of the expression $$\displaystyle 6p-24q$$ results in :
  • $$\displaystyle 6(p-4q)$$
  • $$\displaystyle 6(p-q)$$
  • $$\displaystyle 6(1-4q)$$
  • $$\displaystyle 3(2-12q)$$
Which of the following statement is correct?
  • $$\displaystyle \left( { x }^{ 2 }-2xy \right) \div x=\left( x-2 y \right) $$
  • $$\displaystyle \left( { x }^{ 2 }-2xy \right) \div x=\left( x-2 \right) $$
  • $$\displaystyle \left( { x }^{ 2 }-2xy \right) \div x=\left( 2x-2y \right) $$
  • $$\displaystyle \left( { x }^{ 2 }-2xy \right) \div x=\left( x-y \right) $$
The value of $$(\displaystyle 9{ x }^{ 2 }+18x+27) \div 9$$ is equal to
  • $$\displaystyle x+2$$
  • $$\displaystyle { x }^{ 2 }+2x+2$$
  • $$\displaystyle { x }^{ 2 }+2x+3$$
  • $$\displaystyle { x }^{ 2 }+2x+1$$
Which of the following is incorrect?
  • $$\displaystyle \left( 8{ x }^{ 2 }-8{ y }^{ 2 } \right) \div 8={ x }^{ 2 }-{ y }^{ 2 }$$
  • $$\displaystyle \left( 8{ x }^{ 2 }{ y }^{ 2 }-16xy \right) \div 8xy=\left( xy-2 \right) $$
  • $$\displaystyle \left( { a }^{ 2 }bc+a{ b }^{ 2 }c+ab{ c }^{ 2 } \right) \div abc=\left( a+b+c \right) $$
  • $$\displaystyle \left( { a }^{ 2 }bc+a{ b }^{ 2 }c+ab{ c }^{ 2 }+abc \right) \div abc=\left( a+b+c \right) $$
Which of the following statements is correct?
  • $$\displaystyle \left( 7{ x }^{ 2 }-7 \right) \div 7={ x }^{ 2 }-7$$
  • $$\displaystyle \left( 5{ x }^{ 2 }+10 \right) \div 5={ x }^{ 2 }+10$$
  • $$\displaystyle \left( 4{ x }^{ 2 }+12 \right) \div 2={ x }^{ 2 }+6$$
  • $$\displaystyle \left( 6{ x }^{ 2 }+12 \right) \div 6={ x }^{ 2 }+2$$
Factorise: $$\displaystyle -6{ a }^{ 2 }+6cb-6ca$$
  • $$\displaystyle -6\left( { a }^{ 2 }+cb-ca \right) $$
  • $$\displaystyle 6\left( { a }^{ 2 }-cb+ca \right) $$
  • $$\displaystyle 6\left( { a }^{ 2 }+cb+ca \right) $$
  • $$\displaystyle -6\left( { a }^{ 2 }-cb+ca \right) $$
Factorise: $$\displaystyle 13{ x }^{ 2 }y-65x{ y }^{ 2 }$$
  • $$\displaystyle xy(x-y)$$
  • $$\displaystyle 65xy(x-y)$$
  • $$\displaystyle 13xy(x-5y)$$
  • $$\displaystyle 13xy(x-y)$$
Factorise: $$\displaystyle 5xy+15y$$
  • $$\displaystyle 5y(x+1)$$
  • $$\displaystyle 5y(x+3)$$
  • $$\displaystyle 5y(x+y)$$
  • $$\displaystyle 5y(x+5)$$
Factorisation of the expression : $$\displaystyle -2{ x }^{ 2 }{ y }^{ 3 }+6{ x }^{ 3 }{ y }^{ 2 }-8{ x }^{ 2 }{ y }^{ 2 }$$ results in :
  • $$\displaystyle -2{ x }^{ 2 }{ y }^{ 2 }\left( -y-3x-4 \right) $$
  • $$-\displaystyle 2{ x }^{ 2 }{ y }^{ 2 }\left( y-3x+4 \right) $$
  • $$\displaystyle 2{ x }^{ 2 }{ y }^{ 2 }\left( 3x+y-4 \right) $$
  • $$\displaystyle 2{ x }^{ 2 }{ y }^{ 2 }\left( 3x-y+4 \right) $$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 8 Maths Quiz Questions and Answers