CBSE Questions for Class 8 Maths Rational Numbers Quiz 10 - MCQExams.com

Find
$$\dfrac { 2 }{ 5 } \times \dfrac { -3 }{ 7 } -\dfrac { 1 }{ 14 } -\dfrac { 3 }{ 7 } \times \dfrac { 3 }{ 5 }$$
  • $$2$$
  • $$\dfrac { 1 }{ 2 }$$
  • $$-2$$
  • $$\dfrac { -1 }{ 2 }$$
State which property is used in following operation-
$$\dfrac { -19 }{ 29 } \times \dfrac { 29 }{ -19 } =1$$
  • Additive inverse
  • multiplicative inverse
  • commutative
  • Associative
Name the property which is used in following operation-
$$\dfrac { -4 }{ 5 } \times 1=1\times \dfrac { -4 }{ 5 } =\dfrac { -4 }{ 5 }$$
  • Distributive
  • Associative
  • Commutative
  • None of the above
Find the value of following expression-
$$\dfrac { -4 }{ 5 } \times \dfrac { 3 }{ 7 } \times \dfrac { 15 }{ 16 } \times \dfrac { -14 }{ 9 }$$

  • $$\dfrac { 1 }{ 2 }$$
  • $$\dfrac { 1 }{ 4 }$$
  • $$\dfrac { 1 }{ 3 }$$
  • $$\dfrac { 3 }{ 4 }$$
Solve
$$\dfrac { 2 }{ 5 } \times \left( \dfrac { -3 }{ 7 }  \right) -\dfrac { 1 }{ 6 } \times \dfrac { 3 }{ 2 } +\dfrac { 1 }{ 14 } \times \dfrac { 2 }{ 5 }$$
  • $$\dfrac { 28 }{ 11 }$$
  • $$\dfrac { 11 }{ 28 }$$
  • $$\dfrac { -28 }{ 11 }$$
  • $$\dfrac { -11 }{ 28 }$$
Find the additive inverse of $$\dfrac { -7 }{ 9 }$$
  • $$\dfrac { -9 }{ 7 }$$
  • $$\dfrac { 7 }{ 9 }$$
  • $$\dfrac { 9 }{ 7 }$$
  • $$0$$
For any two real number, an operation defined by $$a* b= 1 +ab$$ is.
  • Commutative but not associative
  • Associative but not commutative
  • Neither Commutative nor associative
  • Both commutative and associative
What is the multiplicative inverse of  $$\dfrac { 8 }{ 21 } ?$$
  • $$-\frac { 8 }{ 21 } $$
  • 1
  • 0
  • $$\frac { 21 }{ 8 } $$
State whether the statements are true (T) or false (F).
If $$\dfrac{x}{y}$$ is the additive inverse of $$\dfrac{c}{d},$$ then $$\dfrac{x}{y} - \dfrac{c}{d} = 0.$$
  • True
  • False
The value of $$\left( \sqrt { 2 } +1 \right) ^{ 6 }+\left( \sqrt { 2 } -1 \right) ^{ 6 }$4
  • 99
  • 182
  • 196
  • 198
State whether the statements are true (T) or false (F).
The additive inverse of $$\dfrac{1}{2}$$ is $$-2.$$
  • True
  • False
An example of a rational number between $$\sqrt { 2 } $$ and $$\sqrt { 15 } $$ is 
  • 3.9
  • 2.6
  • $$\dfrac { \sqrt { 2 } +\sqrt { 15 } }{ 2 } $$
  • $$\dfrac { \sqrt { 2 } X\sqrt { 15 } }{ 2 } $$
which of the following is the insertion of three fractions in between $$\frac{7}{{12}}$$ and $$\frac{9}{{10}}$$  ?
  • $$\frac{8}{{11}},\frac{{15}}{{28}},\frac{{17}}{{21}}$$
  • $$\frac{4}{9},\frac{{23}}{{25}},\frac{7}{{24}}$$
  • $$\frac{{11}}{{18}},\frac{5}{{12}},\frac{{17}}{{19}}$$
  • $$\frac{{8}}{{11}},\frac{15}{{23}},\frac{{17}}{{21}}$$
State whether the statements are true (T) or false (F).
If $$\dfrac{x}{y}$$ is the additive inverse of $$\dfrac{c}{d},$$ then $$\dfrac{x}{y} + \dfrac{c}{d} = 0.$$
  • True
  • False
State whether the statement is true (T) or false (F).
If $$x + y = 0,$$ then $$-y$$ is known as the negative of x, where x and y are rational numbers.
  • True
  • False
State whether the statements are true (T) or false (F).
Subtraction of rational number is commutative.
  • True
  • False
State whether the statements are true (T) or false (F).
For all rational numbers $$a, b$$ and $$c, a (b + c) = ab + bc.$$
  • True
  • False
State whether the statements are true (T) or false (F).
If x and y are negative rational numbers, then so is $$x + y.$$
  • True
  • False
State whether the statements are true (T) or false (F).
The negative of the negative of any rational number is the number itself.
  • True
  • False
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 8 Maths Quiz Questions and Answers