Explanation
$$\textbf{Step -1: Find each exterior angle of the given polygon.}$$
$$\text{Let the number of sides of the polygon be }n.$$
$$\text{Let }AB\text{ and }DC\text{ are the alternate sides of the polygon produced and meet at a right angle at }P.$$
$$\text{So, }\angle PBC\text{ and }\angle PCB\text{ are exterior angles of the polygon.}$$
$$\text{As the given polygon is regular so, all of its interior angles are equal, i.e. }\angle ABC=\angle DCB$$
$$\therefore\angle PBC=180^\circ-\angle ABC$$ $$\textbf{(Linear pair)}$$
$$\text{and }\angle PCB=180^\circ-\angle DCB$$ $$\textbf{(Linear pair)}$$
$$\Rightarrow \angle PCB=180^\circ-\angle ABC$$
$$\text{So, }\angle PBC=\angle PCB$$
$$\text{In }\triangle PCB,$$
$$\angle PBC+\angle PCB+90^\circ=180^\circ$$
$$\Rightarrow 2\angle PBC=90^\circ$$
$$\Rightarrow \angle PBC=45^\circ$$
$$\text{Thus, each exterior angle of the polygon}=45^\circ.$$
$$\textbf{Step -2: Find the number of sides of the polygon.}$$
$$\mathbf{\because\text{Each exterior angle of a regular polygon}=\dfrac{360^\circ}{\text{Number of sides of the polygon}}.}$$
$$\therefore 45^\circ=\dfrac{360^\circ}{n}$$
$$\Rightarrow n=8$$
$$\textbf{Final Answer: Number of Sides are 8. The correct option is B.}$$
Please disable the adBlock and continue. Thank you.