CBSE Questions for Class 8 Maths Understanding Quadrilaterals Quiz 5 - MCQExams.com

The sum of the interior angles of a polygon is four times the sum of its exterior angles. Find the number of sides in the polygon.
  • $$10$$
  • $$12$$
  • $$8$$
  • $$7$$
State true or false:
Is it possible to have a regular polygon whose each interior angle is $$\displaystyle 175^{\circ}$$
  • True
  • False
$$PQRS$$ is a parallelogram whose diagonals intersect at M.
If $$\angle PMS = 54^{\circ}$$, 
$$\angle QSR = 25^{\circ}$$ and $$\angle SQR = 30^{\circ}$$: find $$\angle PSR $$
  • $$45^{\circ}$$
  • $$55^{\circ}$$
  • $$48^{\circ}$$
  • $$56^{\circ}$$
In the alongside diagram, $$ABCD$$ is a parallelogram, then $$AB= 2\, BC$$
183005_a1ed14905673480db1af36c490ef24b8.png
  • True
  • False
The perimeter of a parallelogram $$ABCD= 40$$ cm, $$AB= 3x$$ cm, $$BC= 2x$$ cm and $$CD= 2\left ( y\, +\, 1 \right )$$ cm. Find the values of $$x$$ and $$y$$.
  • $$x= 5$$ and $$y= 4$$
  • $$x= 4$$ and $$y= 5$$
  • $$x= 5$$ and $$y= 5$$
  • $$x= 4$$ and $$y= 4$$
PQRS is a parallelogram whose diagonals intersect at M.
If $$\angle PMS = 54^{\circ}$$, 
$$\angle QSR = 25^{\circ}$$ and $$\angle SQR = 30^{\circ}$$: find $$\angle RPS $$
  • $$86^o$$
  • $$96^o$$
  • $$92^o$$
  • $$100^o$$
PQRS is a parallelogram whose diagonals intersect at M.
If $$\angle PMS = 54^{\circ}$$, 
$$\angle QSR = 25^{\circ}$$ and $$\angle SQR = 30^{\circ}$$: find $$\angle PRS$$
  • $$39^o$$
  • $$29^o$$
  • $$18^o$$
  • $$24^o$$
Two alternate sides of a regular polygon, when produced, meet at a right angle. Find the number of sides of the polygon. 
  • $$3$$
  • $$8$$
  • $$2$$
  • $$9$$
In $$\triangle $$ABC, BDEF and FDCE are parallelogram. Which of the following is correct?
444996.png
  • AB = EF
  • DB = AB
  • ED $$\neq$$ BF
  • BD = CD
State true or false:

In the alongside diagram, $$ABCD$$ is a parallelogram in which $$AP$$ bisects angle $$A$$ and $$BQ$$ bisects angle $$B$$, then
$$AQ= BP$$


182986_3ff7e522aaa849db8cc399113c345c40.png
  • True
  • False
State true or false:

$$E$$ is the mid-point of side $$AB$$ and $$F$$ is the midpoint of side $$DC$$ of parallelogram $$ABCD$$, then $$AEFD$$ is a parallelogram.

  • True
  • False
In parallelogram $$ABCD$$, $$AP$$ and $$AQ$$ are perpendiculars from vertex of obtuse angle $$A$$ as shown in the figure. If $$\angle x\, :\, \angle y= 2\, :\, 1$$; find smallest angles of the parallelogram.(in degrees)


182401.jpg
  • $$55^o$$
  • $$60^o$$
  • $$70^o$$
  • $$48^o$$
State true or false:
The bisectors of interior angles of a parallelogram doesn't form a rectangle.
  • True
  • False
State true or false:

In the following figure, $$ABCD$$ is a parallelogram, then
$$AP$$ bisects angle $$A$$


183049_c352871041a84125ab42c2e1fd33dffc.png
  • True
  • False
In the given figure, $$E$$ is mid-point of $$AB$$ and $$DE$$ meets diagonal $$AC$$ at point $$F$$. If $$ABCD$$ is a parallelogram and area of  $$\bigtriangleup ADF$$ is $$60 \: cm^{2}$$, then area of parallelogram $$ABCD$$ is
187640_2eee91d992734d47886c5818be7a60cc.jpg
  • $$360\ cm^{2}$$
  • $$460\ cm^{2}$$
  • $$450\ cm^{2}$$
  • None of These
In a parallelogram PQRS, find $$\angle RSQ$$ if $$\angle SPQ = 70^o$$ & $$\angle RQS = 60^o$$.
445148.png
  • $$50^o$$
  • $$60^o$$
  • $$70^o$$
  • None
State true or false:
In parallelogram $$ABCD$$, the bisector of angle $$A$$ meets $$DC$$ in $$P$$ and $$AB= 2AD$$, then
$$BP$$ bisects angle $$B$$.
  • True
  • False
State true or false:
In parallelogram $$ABCD$$, the bisector of angle $$A$$ meets $$DC$$ in $$P$$ and $$AB= 2AD$$, then
$$\angle APB= 90^{0}$$
  • True
  • False
State true or false:
For the case of a parallelogram the bisectors of opposite angles are not parallel to each other.
  • True
  • False
The bisectors of opposite angles of a parallelogram are parallel.
  • True
  • False
State true or false:

In the following figure, $$ABCD$$ is a parallelogram, then
$$\angle DAP\, +\, \angle CBP= \angle APB$$


183055_11e9175910354c55ae0689752f180b04.png
  • True
  • False
State true or false:
For the case of a parallelogram the bisectors of any two adjacent angles intersect at $$90^{0}$$.
  • True
  • False
In parallelogram $$ABCD$$ . $$P$$ is a point on side $$AB$$ and $$Q$$ is a point on side $$BC$$, then
$$\bigtriangleup CPD\: $$  and $$\bigtriangleup AQD\: $$ are equal in area.
  • True
  • False
In the given figure, $$M$$ and $$N$$ are the mid-points of the sides $$DC$$ and $$AB$$ respectively of the parallelogram $$ABCD$$. If the area of parallelogram $$ABCD$$ is $$48 \: cm^{2}$$; then the area of the parallelogram $$BNMC$$ is equal to the area of the triangle $$BEC$$.

187837_4c09211a83c04ec0b1758d498347554a.png
  • True
  • False
In parallelogram $$ABCD$$ . $$P$$ is a point on side $$AB$$ and $$Q$$ is a point on side $$BC$$, then
$$Area \left ( \bigtriangleup \: AQD \right )= Area \left ( \bigtriangleup \: APD \right )+Area \left ( \bigtriangleup \: CPB \right )$$
  • True
  • False
There is a regular polygon whose each interior angle is $$175^{\circ}$$
State true or false.
  • True
  • False
State whether true or false:
In the given figure, AM bisects $$\angle A$$ and DM bisects $$\angle D$$ of parallelogram ABCD.
The measure of $$\angle AMD = 90^{\circ}$$.

194737_2c013c1d75444edba5f4cb1ea1f20dcd.jpg
  • True
  • False
In parallelogram ABCD, AP and AQ are perpendiculars from vertex of obtuse angle A as shown. If $$\angle x : \angle y = 2 : 1$$ ; find angles of the parallelogram.
194849_c749943d7e0942a3b6b376f5a3a6f9c4.png
  • $$\angle DAB = \angle C = 160^{\circ}$$ and $$\angle B = \angle D = 60^{\circ}$$
  • $$\angle DAB = \angle C = 120^{\circ}$$ and $$\angle B = \angle D = 60^{\circ}$$
  • $$\angle DAB = \angle C = 230^{\circ}$$ and $$\angle B = \angle D = 60^{\circ}$$
  • $$\angle DAB = \angle C = 100^{\circ}$$ and $$\angle B = \angle D = 60^{\circ}$$
Find the value of $$x , y$$
194833_a49bfc96548844aaba0efe3de6348469.png
  • $$x = 12^{\circ}$$ and $$y = 16^{\circ}$$
  • $$x = 10^{\circ}$$ and $$y = 16^{\circ}$$
  • $$x = 15^{\circ}$$ and $$y = 16^{\circ}$$
  • $$x = 14^{\circ}$$ and $$y = 16^{\circ}$$
The perimeter of a parallelogram ABCD = 40 cm, AB = 3x cm, BC = 2x cm and CD = 2(y +1) cm. Find the values of x and y.
  • x$$ =$$ 4 and y $$=$$ 5
  • x$$ =$$ 2 and y $$= $$7
  • x $$=$$ 3 and y$$ =$$ 8
  • x $$=$$ 1 and y $$=$$ 12
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 8 Maths Quiz Questions and Answers