Explanation
\textbf{Step -1: Find each exterior angle of the given polygon.}
\text{Let the number of sides of the polygon be }n.
\text{Let }AB\text{ and }DC\text{ are the alternate sides of the polygon produced and meet at a right angle at }P.
\text{So, }\angle PBC\text{ and }\angle PCB\text{ are exterior angles of the polygon.}
\text{As the given polygon is regular so, all of its interior angles are equal, i.e. }\angle ABC=\angle DCB
\therefore\angle PBC=180^\circ-\angle ABC \textbf{(Linear pair)}
\text{and }\angle PCB=180^\circ-\angle DCB \textbf{(Linear pair)}
\Rightarrow \angle PCB=180^\circ-\angle ABC
\text{So, }\angle PBC=\angle PCB
\text{In }\triangle PCB,
\angle PBC+\angle PCB+90^\circ=180^\circ
\Rightarrow 2\angle PBC=90^\circ
\Rightarrow \angle PBC=45^\circ
\text{Thus, each exterior angle of the polygon}=45^\circ.
\textbf{Step -2: Find the number of sides of the polygon.}
\mathbf{\because\text{Each exterior angle of a regular polygon}=\dfrac{360^\circ}{\text{Number of sides of the polygon}}.}
\therefore 45^\circ=\dfrac{360^\circ}{n}
\Rightarrow n=8
\textbf{Final Answer: Number of Sides are 8. The correct option is B.}
Please disable the adBlock and continue. Thank you.