CBSE Questions for Class 8 Maths Understanding Quadrilaterals Quiz 9 - MCQExams.com

Suppose $$ABCD$$ is a parallelogram in which $$\angle A = 108^{\circ}$$. Calculate $$\angle B, \angle C$$ and $$\angle D$$.
  • $$72^{\circ}, 108^{\circ}, 72^{\circ}$$
  • $$22^{\circ}, 108^{\circ}, 72^{\circ}$$
  • $$108^{\circ}, 72^{\circ}, 108^{\circ}$$
  • None of these
Which of the following statements is definitely true, if PQRS is a parallelogram?
783157_45d6dfbfe1b2451d8ba6e7abb3eaae0f.png
  • $$PQ$$ and $$SR$$ are adjacent sides.
  • $$\angle P$$ and $$\angle Q$$ are opposite angles
  • $$SR \parallel PQ$$
  • $$PR=RQ$$
The angles A, B, C, D in the parallelogram ABCD are ___________.
725742_40d3081333784a3f9327111d94652d27.png
  • $$90^o, 90^o, 90^o, 90^o$$
  • $$90^o, 45^o, 30^o, 15^o$$
  • $$30^o, 60^o, 20^o, 40^o$$
  • $$90^o, 45^o, 15^o, 20^o$$
The given polygon EFGH is a _____________.
724312_24551abca8d14267aa24cc6fd6cc912e.png
  • Parallelogram
  • Concave polygon
  • Convex polygon
  • Trapezium
All squares are trapeziums.
  • True
  • False
ABCD is a parallelogram and L is a point on DB. The produced line AL meets BC at M and DC produced at N. Given that DL$$=3$$LB, find $$\displaystyle\frac{AB}{CN}$$.
783526_13050f7882504c69966e32fa986d5797.png
  • $$3/2$$
  • $$1/2$$
  • $$4/5$$
  • $$1/4$$
In the adjoining figure, ABCDABCD is a parallelogram

876915_38f6a3eaccca47c291fd8ba6ffb827a7.png
  • True
  • False
Choose the correct answer from the alternatives given.
In a parallelogram $$PQRS,$$ angle $$P$$ is four times of angle $$Q.$$ then the measure of $$\angle R$$ is:
  • $$36^{\circ}$$
  • $$72^{\circ}$$
  • $$130^{\circ}$$
  • $$144^{\circ}$$
If $$ABCD$$ is a parallelogram whose diagonals intersect at $$O$$ and $$\triangle BCD $$ is an equilateral triangle having each side of length $$6$$ cm, then the length of diagonal $$AC$$ is: 
  • $$2\sqrt3$$ cm
  • $$6\sqrt3$$ cm
  • $$3\sqrt6$$ cm
  • $$12 $$ cm
An exterior angle and an interior angle of a regular polygon are in the ratio $$2: 7$$. Find the number of sides in the polygon.
  • $$2$$
  • $$7$$
  • $$9$$
  • $$18$$
Select the INCORRECT match.
  • Quadrilateral with one pair of parallel sides is a Trapezium
  • A rhombus with $$4$$ right angles is a Square
  • Parallelogram with $$4$$ right angles ia a Rectangle
  • All sides of a quadrilateral are equal then it is a Rectangle
In a parallelogram ABCD, $$\angle B= (2x+ 25)^0$$ and $$\angle D= ( 3x-5)^0$$. Find:
(i) The value of $$x$$
(ii) Measure of angle.
  • x=30, b=91 degrees, d=89 degrees
  • x=32, b=91 degrees, d=89 degrees
  • x=30, b=89 degrees, d=91 degrees
  • x=32, b=89 degrees, d=91 degrees
$$ABCD$$ is a parallelogram and $$P$$ is a point on the segment $$\overline {AD}$$ dividing it internally in the ratio $$3 : 1$$ the line $$\overline {BP}$$ meets the diagonal $$\overline {AC}$$ in $$Q$$. Then the ratio $$AQ:QC$$ is
  • $$3:4$$
  • $$4:3$$
  • $$3:2$$
  • $$2:3$$
 Opposite sides of Rectangle and Parallelogram equal and Parallel?
  • True
  • False
$$ABCD$$ is a parallelogram $$X$$ and $$Y$$ are the mid points of $$BC$$ and $$CD$$ respectively. Then, ar(parallelogram $$ABCD$$) is
1059867_33090e6c2c014a4bb8af72b9ca9868de.png
  • $$4\times ar(\triangle AXY)$$
  • $$2\times ar(\triangle AXY)$$
  • $$\dfrac{8}{3}\times ar(\triangle AXY)$$
  • $$None\ of\ these$$
In the following figure, ABCD is a parallelogram then
(i) AP bisects angle A
(ii) BP bisects angle B
(iii) $$\angle \,DAP\, + \,\angle \,CBP\, = \,\angle \,APB$$

1078790_89bc952a7a304a77a0166057eb96f314.JPG
  • True
  • False
Let ABC is given triangle having respective sides a, b, c. D, E, F are points of the sides BC, CA, AB respectively so that AFDE is a parallelogram. The maximum area of the parallelogram is?
  • $$\dfrac{1}{4}bc\sin A$$
  • $$\dfrac{1}{2}bc\sin A$$
  • $$bc\sin A$$
  • $$\dfrac{1}{8}bc\sin A$$
If sides AB and CD of a parallelogram ABCD are bisected at E and F then EBFD is a parallelogram.
  • True
  • False
The perimeter of a parallelogram is $$38 \text{ cm}$$. If the longer side is $$11 \text{ cm}$$, find the length of shorter side.
  • $$5\text{ cm}$$
  • $$2\text{ cm}$$
  • $$8\text{ cm}$$
  • $$4\text{ cm}$$
In the adjoining figure, $$ABCD$$ is a parallelogram in which $$AB = 16\ cm, BC = 10\ cm$$ and $$ L$$ is a point on $$ AC$$ such that $$ CL : LA = 2:3$$. If $$ BL$$ produced meets $$ CD$$ at $$ M$$ and $$ AD$$ produced at $$ N$$,  :then 
(i) $$\triangle CLB \sim  \triangle ALN$$
(ii) $$\triangle CLM \sim \triangle ALB $$
both statement is ?

1144868_c3023e45d5dd411589946f37ddfa38b6.png
  • True
  • False
ABCD is a parallelogram, G is the point on AB such that $$AG=2GB$$. E is a point on DC such that $$CE=2DE$$ and F is a point of BC such that $$BF=2FC$$.Then area of $$\triangle EFG$$ =$$\dfrac{5}{18}$$ of area of ABCD.
  • True
  • False
State the whether given statement is true or false$$ABCD$$ is a parallelogram and the bisector of $$\angle{A}$$ bisects $$BC$$ at $$x$$. Prove that $$AD=2AB$$.
  • True
  • False
$$P$$ and $$Q$$ are points on oppostie sides $$AD$$ and $$BC$$ of a parallelogram $$ABCD$$ such that $$PQ$$ passes through the point of intersection $$O$$ of its diagonals $$AC$$ and $$BD$$.  $$PQ$$ is bisected at O.
  • True
  • False
How many unique measurements are needed to construct a parallelogram.
  • $$2$$
  • $$3$$
  • $$4$$
  • $$1$$
The point of intersection of the diagonals of a quadrilateral divides one diagonal in the ratio $$1: 2 .$$ Can it be a parallelogram?
  • Yes
  • No
  • Sometime
  • Data not sufficient
$$ABCD$$ is a parallelogram. If $$P$$ be a point on $$CD$$ such that $$AP = AD$$ , then the measure of $$\angle P A B + \angle B C D$$ is
  • $$180 ^ { \circ }$$
  • $$225 ^ { \circ }$$
  • $$240 ^ { \circ }$$
  • $$135 ^ { \circ }$$
In a parallelogram $$ABCD$$, the diagonals intersect at $$O$$, if $$OA=3y-4$$ and $$OC=y+20$$ then $$y=$$
  • $$60$$
  • $$24$$
  • $$12$$
  • $$36$$
If $$PQRS$$ is a parallelogram and $$M$$ is a point on $$PQ$$ such that $$PM=\dfrac{3}{4}PQ$$ then find the $$ar(PQR)$$ if$$ar(PMRS)=28\ cm^{2}$$
  • $$12\ cm^{2}$$
  • $$14\ cm^{2}$$
  • $$16\ cm^{2}$$
  • $$20\ cm^{2}$$
$$x, y$$ are the mid-points of opposite sides $$AB$$ and $$DC$$ respectively of a parallelogram $$ABCD, AY$$ and $$DX$$ are intersecting at $$S, CX$$ and $$BY$$ are intersecting at $$R$$. Then $$SXRY$$ is a _
  • Rectangle
  • Kite
  • Parallelogram
  • Square
In the adjoining figure, $$ABCD$$ is a parallelogram in which $$\angle BAO=35^{o}$$ and $$\angle COD=95^{o}, \angle DAC=50^{o}$$
So, the measure of $$\angle ABO$$ is_____________
1302817_4f6817c85da94b06aa0f9be84d132416.png
  • $$35^{o}$$
  • $$70^{o}$$
  • $$50^{o}$$
  • $$60^{o}$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 8 Maths Quiz Questions and Answers