Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

MCQ Questions for Class 12 Maths Quiz with Answers Chapter Wise PDF Download

CBSE Multiple Choice Type Questions for 12th Class Maths PDF formatted study resources are available for free download. These Grade 12 Maths CBSE MCQ Mock Test helps you learn & practice the concepts in a fun learning way.

Class 12 Maths MCQs Multiple Choice Questions with Answers

Here are the chapterwise CBSE MCQ Quiz Test Questions for Class 12th Maths in pdf format that helps you access & download so that you can practice online/offline easily.

Application Of Derivatives Class 12 Engineering Maths MCQ Quiz

Quiz 1 Quiz 2 Quiz 3 Quiz 4 Quiz 5 Quiz 6 Quiz 7 Quiz 8 Quiz 9 Quiz 10 Quiz 11 Quiz 12 Quiz 13

Application Of Derivatives Questions and Answers

Application Of Derivatives Quiz Question Answer
The curve for which the ratio of the length of the segment by any tangent on the Yaxis to the length of the radius vector is constant (K), is (y+x2+y2)xk1=c
The points on the curve 9y2=x3, where the normal to the curve makes equal intercepts with the axes are ........... (4,83)
The angle between the tangents at ant point P and the line joining P to the original, where P is a point on the curve in (x2+y2)=ctan1yx,c is a constnt, is  independent of x
The slope of the tangent to the curve at a point (x,y) on it is proportional to (x2). If the slope of the tangent to the curve at (10,9)  on it is 3. The equation of the curves is . y=316(x2)2+3
The tangent at the point (2,2) to the curve, x2y22x=4(1y) does not pass through the point. (2,7)
If the tangent to the conic, y6=x2 at (2, 10) touches the circle, x2+y2+8x2y=k (for some fixed k) at a point (α,β); then (α,β) is; (817,217)
Let b be a nonzero real number. Suppose f:RR is a differentiable function such that f(0)=1.
If the derivative f' of f satisfies the equation f(x)=f(x)b2+x2 for all xR, then which of the following statements is/are TRUE?
f(x)f(x)=1 for all xR
What is the x-coordinate of the point on the curve f(x)=x(7x6), where the tangent is parallel to x-axis? 27
Consider the following statements in respect of the function f(x)=x31,xϵ[1,1]
I. f(x) is increasing in [1,1]
II. f(x) has no root in (1,1).
Which of the statements given above is/ are correct?
Only I
If x2f(4a)=y2f(a25) respresents and ellipse with major axis as y-axis and f is a decreasing function, then  a(1,5)

Application Of Integrals Class 12 Engineering Maths MCQ Quiz

Quiz 1 Quiz 2 Quiz 3 Quiz 4 Quiz 5 Quiz 6 Quiz 7 Quiz 8 Quiz 9 Quiz 10 Quiz 11 Quiz 12 Quiz 13 Quiz 14

Application Of Integrals Questions and Answers

Application Of Integrals Quiz Question Answer
Area of the region bounded by the curve (yx)2=x3 and the line x=1 is 43
Area bounded by the curves y=logex and  y=(logex)2 is ?
e2
Area enclosed by the curve y=f(x) defined parametrical as x=1t21+t2,y=2t1+t2 π sq. units
The area (in sq units) of the region bounded by the curve y=x and the lines y=0,y=x2, is  103
The area bounded by the curve y=x3, x-axis and two ordinates x=1 to x=2 equal to  15/4 sq.unit
Area enclosed by the graph of the function y=ln2x1 lying in the 4th quadrant is 4e
Area bounded by the curves y=sinx, tangent drawn to it at x=0 and the line x=π2 is equal to π222 sq.units
Area bounded by curves x=y1
and y=x+1 is -
16squnit
The area of the region bounded by the curves y=x2 and y=|x| is 13
The area enclosed by the line y = x + 1, X- axis and the lines x = -3 and x = 3 is  10

Continuity And Differentiability Class 12 Engineering Maths MCQ Quiz

Quiz 1 Quiz 2 Quiz 3 Quiz 4 Quiz 5 Quiz 6 Quiz 7 Quiz 8 Quiz 9 Quiz 10 Quiz 11 Quiz 12 Quiz 13 Quiz 14 Quiz 15

Continuity And Differentiability Questions and Answers

Continuity And Differentiability Quiz Question Answer
Let f(x)=x|x|,g(x)=sinx and h(x)=(gof)(x). Then h(x) is not differentiable at x=0
If f(x)=0 for x<0 and f(x) is differentiable at x=0, then for x0,f(x) may be x3/2
ddx(sin1{1+x+1x2})= 121x2
If f(x) is a differentiable function and g(x) is a double differentiable function such that |f(x)|1 and f(x)=g(x). If f2(0)+g2(0)=9such that there exists some c(3,3) such that g(c). g(c)<0, True or false
True
Let f:RR and g:RR be functions satisfying f(x+y)=f(x)+f(y)+f(x)f(y) and f(x)=xg(x) for all x,yR. If lim, then which of the following statements is/are TRUE? The derivative { f }^{ \prime  }\left( 0 \right)  is equal to 1
For the curve x = t^2 - 1, y = t^2 - t, tangent is parallel to x - axis where,
t=\dfrac{1}{2}
Let F(x) = \left( f\left( x \right)  \right) ^{ 2 }+\left( f\left( x \right)  \right) ^{ 2 },F\left( 0 \right) -6 where f(x) is a differential  function such that \left| f\left( x \right)  \right| \le 1\forall x\notin \left[ -1,1 \right] then choose the correct statement (s) For some c\in \left( -1,1 \right) , F'\left( c \right) \ge 6,F"\left( c \right) \le 0
If f(x)={ sin }^{ -1 }\left[ \dfrac { 2x }{ 1+{ x }^{ 2 } }  \right] ,then f(x) is differentiable on  R-{-1,1}
\displaystyle \frac{d}{dx}(\tan ^{-1}x) \displaystyle \frac{1}{1+x^{2}}.
If \displaystyle x+y=x^{y} then \displaystyle \frac{dy}{dx}\ equals- \displaystyle \frac{yx^{y-1}-1}{1-x^{y}\log x}

Determinants Class 12 Engineering Maths MCQ Quiz

Quiz 1 Quiz 2 Quiz 3 Quiz 4 Quiz 5 Quiz 6 Quiz 7 Quiz 8 Quiz 9 Quiz 10 Quiz 11 Quiz 12

Determinants Questions and Answers

Determinants Quiz Question Answer
If A is a singular matrix, then adj A is singular
If  A = \left( \begin{array} { l l } { 1 } & { 2 } \\ { 3 } & { 5 } \end{array} \right),   then the value of the determinant  \left| A ^ { 2009 } - 5 A ^ { 2008 } \right|  is - 6
If A=\begin{bmatrix} -4 & -1 \\ 3 & 1 \end{bmatrix} then the determinant of the matrix \left( {A}^{2016}-2{A}^{2015}-{A}^{2014} \right)  is -2016
If A=A=\left[ \begin{matrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{matrix} \right],then \left| A \right| \left| AdjA \right| is equal to {a}^{9}
If A is a square matrix (adj \,A)' - (adj \,A') 2A
If adj B = A, |P| = |Q| = 1, then adj \left( { Q }^{ -1 }{ BP }^{ -1 } \right) is PAQ
There are  12  points in a plane. The number of the straight lines joining any two of them when  3  of them are collinear is. 64
If A is singular matrix, then A.(adj\,A) is  singular
If A is 4\times 4 matrix and if \left| \left| A \right| adj\left( \left| A \right| A \right)  \right| ={ \left| A \right|  }^{ n }, then n is  11
If A=\begin{bmatrix} 5a & -b \\ 3 & 2 \end{bmatrix} and A(adj\, A)=A{A}^{T} then 5a+3b is equal to  5

Differential Equations Class 12 Engineering Maths MCQ Quiz

Quiz 1 Quiz 2 Quiz 3 Quiz 4 Quiz 5 Quiz 6 Quiz 7 Quiz 8 Quiz 9 Quiz 10 Quiz 11

Differential Equations Questions and Answers

Differential Equations Quiz Question Answer
The solution of \dfrac{dy}{dx}=2^{x-y} is: 2^{x}-2^{y}=c
The solution of (x^{2}+x)\frac{dy}{dx}=1+2x is: e^{y}=c(x^{2}+x)
\displaystyle e^{x-y}dx+e^{^{y-x}}dy=0
Solve the differential equations.
\displaystyle e^{2x}+e^{2y}=-k
The solution to the differential equation y\ln y \, +\, xy'\, =\, 0\, where\, y(1)\, =\, e, is: x(\ln y)\, =\, 1
x^{\frac{b-c}{bc}} . x^{\frac{c-a}{ca}} . x^{\frac{a-b}{ac}}=

1
The solution of x^{2} \cfrac{dy}{dx}=2 is
y=-\cfrac{2}{x}+c
Which of the following differential equation is linear ? (1+x)\dfrac{dy}{dx}-xy=1
Degree of \dfrac{d^{3}y}{dx^{3}}+2\left ( \dfrac{dy}{dx} \right )^{4}+\dfrac{dy}{dx}=\cos x is 1
The solution of \dfrac{dy}{dx}=e^{logx} is: 2y=x^{2}+c
Check whether the function is homogenous or not. If yes then find the degree of the function
g(x)=4-x^2.
Not homogenous

Integrals Class 12 Engineering Maths MCQ Quiz

Quiz 1 Quiz 2 Quiz 3 Quiz 4 Quiz 5 Quiz 6 Quiz 7 Quiz 8 Quiz 9 Quiz 10 Quiz 11 Quiz 12 Quiz 13 Quiz 14 Quiz 15 Quiz 16

Integrals Questions and Answers

Integrals Quiz Question Answer
\int { { e }^{ x^{ 3 } }+{ x }^{ 2-1 }(3{ x }^{ 4 }+{ 2x }^{ 3 }+{ 2x }^{ 2 }\quad x=h(x)+c } then the value of h(1)h(-1). 1
\displaystyle \int \frac { 1 - x ^ { 2 } } { \left( 1 + x ^ { 2 } \right) \sqrt { 1 + x ^ { 4 } } } d x is equal to 
\frac { 1 } { \sqrt { 2 } } \sin ^ { - 1 } \left\{ \frac { \sqrt { 2 } x } { x ^ { 2 } + 1 } \right\} + c
Let 1 _ { n } = \int _ { 0 } ^ { \frac { 1 } { 2 } } \frac { 1 } { \sqrt { 1 - x ^ { n } } } d x where n > 2 , then
I _ { n } < \frac { \pi } { 6 }
If { I }_{ m }=\overset { e }{ \underset { 1 }{ \int   }  } (lnx)^{ m }dx, where m\epsilon N,then { I }_{ 10 }+10{ I }_{ 9 } is equal to- e
If for every integer n, \int _{ n }^{ n+1 }{ f(x)dx={ n }^{ 2 } } , then the value of \int _{ -2 }^{ 4 }{ f(x)dx } is - 16
\int _{ 0 }^{ 4036 }{ \dfrac { { 2 }^{ x } }{ { 2 }^{ x }+{ 1 }^{ 4036-x } }  } dx=............ 4035
If { I }_{ 1 }=\int _{ x }^{ 1 }{ \cfrac { 1 }{ 1+{ t }^{ 2 } }  } dt and { I }_{ 2 }=\int _{ 1 }^{ 1/x }{ \cfrac { 1 }{ 1+{ t }^{ 2 } }  } dt for x > 0, then  { I }_{ 1 }={ I }_{ 2 }
\frac { 1 }{ \pi  } \int _{ -2 }^{ 2 }{ \frac { 1 }{ 4+{ x }^{ 2 } } dx= }  \frac { 1 }{ 4 }
\displaystyle \int_{-1}^{1}\dfrac{x^4}{1+e^{x^7}}dx is 1/5
Evaluate: \int { \sqrt { \dfrac { x }{ 4-{ x }^{ 3 } }  }  } dx 2\sin ^{ -1 }{ \left( \dfrac { { x }^{ \dfrac { 3 }{ 2 } } }{ 2 } \right) +c }

Inverse Trigonometric Functions Class 12 Engineering Maths MCQ Quiz

Quiz 1 Quiz 2 Quiz 3 Quiz 4 Quiz 5 Quiz 6 Quiz 7 Quiz 8 Quiz 9 Quiz 10 Quiz 11

Inverse Trigonometric Functions Questions and Answers

Inverse Trigonometric Functions Quiz Question Answer
if\quad x>0\quad then\quad { tanh }^{ -1 }\left( \frac { { x }^{ 2 }-1 }{ { x }^{ 2 }+1 }  \right)  { log }_{ e }x
If \cos^{-1}x-\cos^{-1}(\dfrac {y}{2})=\alpha ax^{2}-4xy\cos \alpha +y^{2}= 4\sin^{2}\alpha
{\cot}^{-1}\left(\sqrt{\cos\alpha}\right) -{\tan}^{-1}\left(\sqrt{\cos\alpha}\right) =x, then \sin x is equal to \displaystyle {\tan}^{2}\frac{\alpha}{2}
{ cos }^{ -1 }(\frac { x }{ 3 } )+{ cos }^{ -1 }(\frac { y }{ 2 } )=(\frac { \theta  }{ 2 } ) , then the value of { 4x }^{ 2 }-12xy cos(\frac { \theta  }{ 2 } )+{ 9y }^{ 2 } is equal to  18(1-cos\theta )
\cos ^{ -1 }{ \left\{ \dfrac { 1 }{ 2 } { x }^{ 2 }+\sqrt { { 1-x }^{ 2 } } .\sqrt { 1\dfrac { { x }^{ 2 } }{ 4 }  }  \right\}  } =\cos ^{ -1 }{ \dfrac { x }{ 2 }  } -\cos ^{ -1 }{ x }  holds for 0\le x\le 1
tan^{-1}y=tan^{-1}x+tan^{-1}(\frac{2x}{1-x^{2}}) where |x| < \frac{1}{\sqrt{3}}. Then a value of y is: \dfrac{3x-x^{3}}{1-3x^{2}}
4\tan ^{ -1 }{ \frac { 1 }{ 5 }  } -\tan ^{ -1 }{ \frac { 1 }{ 70 }  } +\tan ^{ -1 }{ \frac { 1 }{ 99 }  } = \pi
\cos ^{ -1 }{ \left( \cos { \dfrac { 7\pi  }{ 6 }  }  \right)  }  is equal to \dfrac {5\pi}{6}
The value of \sin ^{ -1 }{ (\cos { (\cos ^{ -1 }{ (\cos { x } ) } +\sin ^{ -1 }{ (\sin { x } ) } ) } ) } ,\quad where\quad x\in (\frac { \pi  }{ 2 } ,\pi ), is equal to  -\frac { \pi }{ 2 }
The value of \sin^{-1}(\sin 3)+\cos^{-1}(\cos 7)-\tan^{-1}(\tan 5) is \pi-1

Linear Programming Class 12 Engineering Maths MCQ Quiz

Quiz 1 Quiz 2 Quiz 3 Quiz 4 Quiz 5 Quiz 6

Linear Programming Questions and Answers

Linear Programming Quiz Question Answer
Solution of LPP to minimize z = 2x + 3y, such that x \geq 0, y \geq 0, 1 \leq x + 2y  \leq 10 is x = 0, y = \dfrac{1}{2}
The point which provides the solution to the linear programming problem : Max P= 2x+3y subject to constraints :x\geq 0, y\geq 0,2x+2y\leq 9,2x+y\leq 7,x+2y\leq 8, is (1,3.5)
Feasible region is the set of points which satisfy all the given constraints
If the corner points of the feasible solution are (0, 10), (2, 2) and (4, 0), then the point of minimum z = 3x + 2y is  (2, 2)
Minimise Z=\sum _{ j=1 }^{ n }{ \sum _{ i=1 }^{ m }{ { c }_{ ij }.{ x }_{ ij } }  }
Subject to \sum _{ i=1 }^{ m }{ { x }_{ ij } } ={ b }_{ j },j=1,2,......n
\sum _{ j=1 }^{ n }{ { x }_{ ij } } ={ b }_{ j },j=1,2,......,m is a LPP with number of constraints
m+n
The solution of the set of constraints of a linear programming problem is a convex (open or closed) is called ______ region. feasible
Solving an integer programming problem by rounding off answers obtained by solving it as a linear programming problem (using simplex), we find that The value of the objective function for a maximization problem will likely be less than that for the simplex solution.
If a = b then ax = ........... bx
The bar graph shows the grades obtained by a group of pupils in a test.
If grade C is the passing mark, how many pupils passed the test?

407807_3f3eaf2b94e44e8b8e7a4309fee6bd7f.png
30
An iso-profit line represents An infinite number of solutions all of which yield the same profit

Matrices Class 12 Engineering Maths MCQ Quiz

Quiz 1 Quiz 2 Quiz 3 Quiz 4 Quiz 5 Quiz 6 Quiz 7 Quiz 8 Quiz 9 Quiz 10 Quiz 11 Quiz 12

Matrices Questions and Answers

Matrices Quiz Question Answer
If \displaystyle A=\left[ \begin{matrix} 3 & 1 \\ -1 & 2 \end{matrix} \right]  and \displaystyle I=\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right] , then the correct statement is: \displaystyle { A }^{ 2 }-5A+7I=O
If AB = AC then  B need not be equal to C
If \mathrm{A}^{2}=\mathrm{A},\ \mathrm{B}^{2}=\mathrm{B},\ \mathrm{A}\mathrm{B}=\mathrm{B}\mathrm{A}=O (Null Matrix), then (\mathrm{A}+\mathrm{B})^{2}=
\mathrm{A}+\mathrm{B}
I A=\left[\begin{array}{ll} 0 & 1\\ 1 & 0 \end{array}\right],  A^{4}=
(I is an identity matrix.)
I
lf \mathrm{A}= \left[\begin{array}{lll} o & c & -b\\ -c & o & a\\ b & -a & o \end{array}\right]\mathrm{a}\mathrm{n}\mathrm{d}  \mathrm{B}=\left[\begin{array}{lll} a^{2} & ab & ac\\ ab & b^{2} & bc\\ ac & bc & c^{2} \end{array}\right], then \mathrm{A}\mathrm{B}=
\mathrm{O}
lIf \mathrm{A} =\left[\begin{array}{ll} a & 0\\ a & 0 \end{array}\right],\ \mathrm{B}=\left[\begin{array}{ll} 0 & 0\\ b & b \end{array}\right], then \mathrm{A}\mathrm{B}= 
O
If A=\left[\begin{array}{lll} 1 & -2 & 3\\ -4 & 2 & 5 \end{array}\right] and B=\left[\begin{array}{ll} 2 & 3\\ 4 & 5\\ 2 & 1 \end{array}\right], then 
\mathrm{A}\mathrm{B},\ \mathrm{B}\mathrm{A} exist and are not equal
A=\left[\begin{array}{lll} 0 & 1 & -2\\1 & 0 & 3\\2 &-3 & 0 \end{array}\right] then \mathrm{A}+\mathrm{A}^{\mathrm{T}}=
\left[\begin{array}{lll} 0 & 2 & 0\\ 2 & 0 & 0\\ 0 & 0 & 0 \end{array}\right]
\left[\begin{array}{ll} x & 0\\ 0 & y \end{array}\right]\left[\begin{array}{ll} a & b\\ c & d \end{array}\right]=
\left[\begin{array}{ll} ax & b_{X}\\ yc & dy \end{array}\right]
If \mathrm{A}=\left[\begin{array}{lll} 1 & -3 & -4\\ -1 & 3 & 4\\ 1 & -3 & -4 \end{array}\right], then \mathrm{A}^{2}=
Null matrix

Probability Class 12 Engineering Maths MCQ Quiz

Quiz 1 Quiz 2 Quiz 3 Quiz 4 Quiz 5 Quiz 6 Quiz 7 Quiz 8 Quiz 9 Quiz 10 Quiz 11

Probability Questions and Answers

Probability Quiz Question Answer
Three number are chosen at random without replacement from {1,2,3,...8}. The probability that their minimum is 3, given that their maximum is 6 is  \frac{3}{28}
Difference between sample space and subset of sample space is considered as  complementary events.
If A and B are two events in a sample space S such that P\left ( A \right )\neq 0,  then  P\left ( \frac{B}{A} \right )= \frac{P\left ( A\cap B \right )}{P\left ( A \right )}
Let A and E be any two events with positive probabilities :
Statement - 1 : P \left (\displaystyle \frac{E}{A} \right) \geq P \left (\displaystyle \frac{A}{E} \right ) P(E)
Statement - 2 : P \left (\displaystyle \frac{A}{E}\right ) \geq P(A\cap E)
Both the statement are true
If \mathrm{C} and \mathrm{D} are two events such that \mathrm{C}\subset \mathrm{D} and \mathrm{P}(\mathrm{D})\neq 0, then the correct statement among the following is 
P\left(\dfrac{C}{D}\right) \geq \mathrm{P}(\mathrm{C})
If A and B are any two events such that P(A) = \dfrac {2}{5} and P(A\cap B) = \dfrac {3}{20}, then the conditional probability, P(A|(A'\cup B')), where A' denotes the complement of A, is equal to: \dfrac {5}{17}
It is given that the events A and B are such that P(A)=\displaystyle \frac{1}{4},\ P(A|B)=\displaystyle \frac{1}{2} and P(B|A)=\displaystyle \frac{2}{3}. Then P(B) is 

\displaystyle \frac{1}{3}
Assertion is False, Reason is True
One of the two boxes, box I and box II, was selected at random and balls are drawn randomly out of this box. The ball was found to be red.If the probability that this red ball was drawn from box II is \dfrac{1}{3}, then the correct option options with the possible values of n_1,n_2,n_3 and n_4 is (are)
n_1 = 3, n_2=6,n_3=10,n_4=50
A fair die is rolled repeatedly until a six is obtained. Let X denote the number of rolls required.
The conditional probability that X \geq 6 given X > 3 equals
\displaystyle \frac{25}{36}

Relations And Functions Class 12 Engineering Maths MCQ Quiz

Quiz 1 Quiz 2 Quiz 3 Quiz 4 Quiz 5 Quiz 6 Quiz 7 Quiz 8 Quiz 9 Quiz 10 Quiz 11 Quiz 12

Relations And Functions Questions and Answers

Relations And Functions Quiz Question Answer
If f:N\rightarrow N,f(x)=x+3, then \quad { f }^{ -1 }(x)=..... does not exist
If f(x)=8x^3 and g(x)=x^{1/3} then (g o f)(x)=? 2x
Which of the following functions are one-one?
h:R\rightarrow R given by h(x)={ x }^{ 3 }+4 for all \quad x\in R
A mapping function f:X\rightarrow Y is one-one, if
f({ x }_{ 1 })=f({ x }_{ 2 })\Rightarrow { x }_{ 1 }={ x }_{ 2 } for all { x }_{ 1 },{ x }_{ 2 }\in X
Let R be a relation from a set A to a set B,then
\displaystyle R\subseteq A\times B
Number of one-one functions from A to B where n(A)=4, n(B)=5. 120
Find the value of \displaystyle \left( g\circ f \right) \left( 6 \right)  if \displaystyle g\left( x \right) ={ x }^{ 2 }+\frac { 5 }{ 2 }  and \displaystyle f\left( x \right) =\frac { x }{ 4 } -1.
2.75
The first component of all ordered pairs is called Domain
Find the correct expression for \displaystyle f\left( g\left( x \right)  \right)  given that \displaystyle f\left( x \right) =4x+1 and \displaystyle g\left( x \right) ={ x }^{ 2 }-2 \displaystyle 4{ x }^{ 2 }-7
The second component of all ordered pairs of a relation is Range

Three Dimensional Geometry Class 12 Engineering Maths MCQ Quiz

Quiz 1 Quiz 2 Quiz 3 Quiz 4 Quiz 5 Quiz 6 Quiz 7 Quiz 8 Quiz 9 Quiz 10 Quiz 11

Three Dimensional Geometry Questions and Answers

Three Dimensional Geometry Quiz Question Answer
The equation of a plane passing through the points A(a, 0, 0), B(0, b, 0) and C(0, 0, c) is given by? \dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1
The direction consines of the line drawn from P\left ( -5,3,1 \right )\,to\,Q\left ( 1,5,-2 \right ) is \left ( \dfrac {6}{7},\dfrac {2}{7},-\dfrac {3}{7} \right )
If a straight line makes an angle of 60^\circ with each of the X and Y axes, the angle which it makes with the Z axis is \dfrac {3\pi}{4}
The points (p+1, 1), (2p+1, 3) and (2p+2,2p) are collinear if  p=-\dfrac{1}{2}
In a plane there are 10 points, no three are in same straight line except 4 points which are collinear, then the number of straight lines are 45
The st lines whose direction cosines satisfy:
al+bm+cn=0 and fmn+gnl+hlm=0 are perpendicular if: 
\dfrac {f}{a}+\dfrac {g}{b}+\dfrac {h}{c}=0
The equation of the plane which passes through the x-axis and perpendicular to the line \dfrac {(x - 1)}{cos\theta} = \dfrac {(y + 2)}{sin\theta} = \dfrac {(z - 3)}{0} is x\, cos\theta + y\,sin\theta = 0
If l_1, m_1, n_1 and l_2, m_2, n_2 are the direction cosines of two perpendicular lines, then the direction cosine of the line which is perpendicular to both the lines , will be (m_1n_2 - m_2n_1), (n_1l_2 - n_2l_1), (l_1m_2 - l_2m_1)
The point collinder with (1,-2,-3) and (2,0,0) amoung the following is  (0, -4, -6)
A line with direction ratio 2,7,-5 is drawn to intersect the lines \frac { x-y }{ 3 } =\frac { y-7 }{ -1 } =\frac { z+2 }{ 1 } and \frac { x+3 }{ -3 } =\frac { y-3 }{ 2 } =\frac { z-6 }{ 4 }  at P and Q respectively, then length of PQ is- \sqrt { 78 }

Vector Algebra Class 12 Engineering Maths MCQ Quiz

Quiz 1 Quiz 2 Quiz 3 Quiz 4 Quiz 5 Quiz 6 Quiz 7 Quiz 8 Quiz 9 Quiz 10 Quiz 11 Quiz 12 Quiz 13 Quiz 14

Vector Algebra Questions and Answers

Vector Algebra Quiz Question Answer
The position vector of A is 2\vec { i } +3\vec { j } +4\vec { k } \vec { AB } =5\vec { i } +7\vec { j } +6\vec { k } , then the position vector of B is -7\vec { i } -10\vec { j } -10\vec { k }
Line passing through (3,4,5)  and (4,5,6)  has direction ratios   \ldots 1,1,1
In a parallelogram ABCD, |\overrightarrow{AB}| = a, |\overrightarrow{AD}| = b and |\overrightarrow{AC}| = c, then \overrightarrow{DB}.\overrightarrow{AB} has the value \displaystyle \frac{1}{2} (a^2 + b^2 - c^2)
If |\overrightarrow{C}|^2=60 and \overrightarrow{C} \times (\widehat{i}+2\widehat{j}+5\widehat{k})=\overrightarrow{0}, then a value of \overrightarrow{C}\cdot (-7 \widehat{i}+2\widehat{j}+3\widehat{k}) is :
12\sqrt{2}
If \vec{a} \times \vec{b} = \vec{b} \times \vec{a}, then \mathrm{\vec{a}}=k\mathrm{\vec{b}}
Let P,\ Q,\ R and S be the points on the plane with position vectors -2\hat{i}-\hat{j},\ 4\hat{i},\ 3\hat{i}+3\hat{j} and -3\hat{i}+2\hat{j} respectively. The quadrilateral PQRS must be a
parallelogram, which is neither a rhombus nor a rectangle
Statement -1 is True, Statement -2 is False
ABCD is a parallelogram and AC, BD be its diagonals Then \vec{AC} +\vec{BD} is
2\vec{BC}
The triangle ABC is defined by the vertices A= (0,7,10) , B=(-1,6,6) and C=(-4,9,6). Let D be the foot of the attitude from B to the side AC then BD is
-\overline{i}+2\overline{j}+2\overline{k}
The point C=(\dfrac{12}{5}, \dfrac{-1}{5},\dfrac{4}{5}) divides the line segment AB in the ratio 3:2. If B=(2,-1,2) then A is
(3, 1,-1)

Maths MCQ Questions for Class 12 - Practice Test with Solutions 

Do you want to overcome your drawbacks while attempting the quizzes or MCQ tests like time consumption, approaching questions, etc.? Take the advantage of practicing with MCQExams.com MCQ Questions for Standard 12 Maths Test. As it is a time-based approach and also provides answers to all questions.

One should practice the MCQs in this way for a better assessment of their preparation level. All chapters CBSE Class 12 Maths MCQ Quiz Questions with Solutions PDF free download links are available for easy access & quick reference.

How to Use MCQExams.com Chapterwise 12th Maths MCQ Interactive Quiz?

Guys do you love to share your practice hacks and tips with your friends? If yes, then our 12tth standard CBSE Maths MCQ interactive quiz help you do the same. Excited to know the process then jump into the below steps right away: