Limits And Derivatives - Class 11 Commerce Maths - Extra Questions

Find the derivative of the following functions (it is to be understood that $$a, b, c, d, p, q, r$$ and $$s$$ are fixed non-zero constants and $$m$$ and $$n$$ are integers) : $$\sin (x + a)$$



$$\dfrac{d}{dx}\left\{\cos x^0\right\}=?$$



Find dy/dx=? If, x=$$\cos(\log t )$$ and y=$$\log(\cos t)$$



Find the derivatives of $$x \cos x$$



Find the differentiation of $$\sec \left( {{{\tan }^{ - 1}}{\rm{x}}} \right)$$ w.r.t. $$x$$.



Find the derivative of the following functions:
$$\displaystyle 5\sec x+4\cos x$$



Find the derivative of the following functions: $$\displaystyle \cos ec\,x$$



Find the derivative of the following functions (it is to be understood that $$a, b, c, d, p, q, r$$ and $$s$$ are fixed non-zero constants and $$m$$ and $$n$$ are integers) : $$\displaystyle \sin ^{n}x$$



Find the differential coefficient of $$\sin x$$ by first principle.



Prove that the following functions are increasing.
$$y \, = \, 2x \, + \, sin \, x \, for \, x \, \epsilon \, R$$



Find the derivative of the following functions from the first principals w.r.t to $$x$$.
$$\tan 2x$$



Solve : $$I_n=\displaystyle \int_{0}^{\dfrac{\pi}{2}}e^{-x}\sin ^nxdx$$  



Solve:$$\dfrac{d}{dx}(cosec x)=?$$



Find the derivative of tan x using  first principle of derivatives



Find the derivative of $$cos^2\:x$$, by using first principle of derivatives.
1227860_0461f42ba1d243fa9f8e7a1dbb26eae8.JPG



Dfferentiate w.r.t x:
$$tan^2\, 7x$$



Find the derivation of $$\sqrt{tan x}$$ with respect to x using first principle.



If $$y=x^{ \cos x }+{ \left( \tan x \right)  }^{ \cot x },find\dfrac { dy }{ dx } $$



Find $$\frac{dy}{dx},$$  if $$y=\sqrt{cos(3x+1)}$$  



If $$y = \tan \left( {2x + 3} \right)$$ . Find $$\dfrac{{dy}}{{dx}}$$.



$$2\dfrac{dy}{dx}-y\sec x=y^3\tan x$$.



Differentiate:$$y=\sin{\left(2x+3\right)}$$ w.r.t $$x$$



$$f\left( x \right) =\left( \sin x+\cos x \right) $$ Find $$f^{\prime} (x)$$



Find the derivative of  $$\dfrac { x ^ { 5 } - \cos x } { \sin x } $$   with respect to  $$x.$$



Differentiate the function with respect to x.
$$\cos x\cdot \cos 2x\cdot \cos 3x$$.



Differentiate the following from first principle.
$$\sin(x+1)$$.



Differentiate the following from first principle.
$$f(x)=\cos\left(x-\dfrac{\pi}{8}\right)$$



Differentiate the following 
$$\cos \sqrt{x}$$.



Differentiate: $$2\sqrt{\cot (x^{2})}$$ w.e.t.X



Find $$\dfrac{dy}{dx}$$ if $$y + \sin y = \cos x.$$



If $$y = f \left (\frac{2x - 1} {x^{2} + 1}  \right )$$ and $$f^{'}(x) = \sin x^{2}$$, then $$\frac{dy} {dx} = $$ ___________.                                 (IIT-JEE, 1982)



Differentiable the function w.r.t .x.
$$ x ^{\sin x} + (\sin x) ^{\cos x} $$



If $$  y = (\tan ^{-1} x)^{2} $$ show that $$ (x ^{2} +  1)^{2} y_{2} +  2x (x^{2}+ 1)^{2} y_{2} +  2x ( x^{2} +  1) y_{1} =  2 $$where$$y_{1},y_{2}$$ have their usual meaning.



prove that , $$ \dfrac{dy}{dx} = \dfrac{(1 + y) \cos x + y \sin x}{1 + 2y + \cos x  - \sin x} $$
1860299_b8d9ebf9384144c28d89b7f79ef6c71a.png



Find whether function is increasing or decreasing in given domain
$$f (x) = sin^4 X + cos^4 x, x \epsilon (0, \frac{\pi }{4})$$



If $$y=(\sin x - \cos x)^{(\sin x- \cos x)}$$ then find $$\dfrac{dy}{dx}$$



Differentiate given functions w.r.t. $$x$$:
$$x^3e^x \sin x$$



Find the derivatives of the following:
$$cosec x$$.



$$\dfrac{d}{dx}$$(cos$$^2$$ x sin x)



If $$cos^{-1}{(\dfrac{x^2-y^2}{x^2+y^2})}=2k$$, show that $$y\dfrac{dy}{dx}=x tan^2k$$



$$\sum _{ 0 }^{ \pi  }{ \dfrac { (ax+b) \sec x \tan x }{ 4+{ tan }^{ 2 }x }  } dx(a,b>0)$$



Class 11 Commerce Maths Extra Questions