Relations And Functions - Class 11 Commerce Maths - Extra Questions

Find an explicit formula (in terms of n$$\epsilon $$ N)for $$f(n)= (n - 1)+ 2n -1$$



If f is a real function defined by $$f(x) = \dfrac{x - 1}{x + 1}$$, then prove that
$$f(2x) = \dfrac{3f(x) + 1}{f(x) + 3}$$



Find the least value of $$x$$ when $$-5\le 2x-7$$.



If $$f(x)=x$$, then which of the following must be true?
(a) $$f(a+b)=f(a)+f(b)$$
(b) $$f(2a)=2f(a)$$
(c) $$f(-a)=-f(a)$$



If $$f(x)=x+7$$ and $$g(x)=x-7, x\in R$$, find $$fog(6)$$.



In  eq  $$x^{2}+y=6x-14$$
if $$x=0 ,1,2 $$
then the values of $$y$$ are



The length, l metres, of a garden is $$78.5$$ metres, correct to the nearest half metre. Complete this statement about the value of l.
________$$\leq$$ l $$<$$ _______.



If $$y=f(x)=\dfrac {ax-b}{bx-a}$$, show that $$x=f(y)$$



Prove that $$\displaystyle f' \, (1) \, + \, f \, (-1) \, = \, -\, f \, (0) $$, if $$ f \, (x) \, = \, x^5 \, +\, x^3 \, - \, 2x\, -\, 3$$



Discuss the commutativity and associativity of binary operation $$\ast$$. defined on $$A=Q-\left\{ 1 \right\} $$ by the rule $$a\ast b=a-b+ab$$ fo all $$a,b\in A$$. Also find the identity element of $$\ast$$ in $$A$$ and hence find the invertible elements of $$A$$.



If $$f (x)=a+bx+cx^2$$, show that
$$\displaystyle \underset{0}{\overset{1}{\int}} f(x)dx=\dfrac{1}{6} \left[f(0)+4f \left(\dfrac{1}{2}\right)+f(1)\right]$$ 



Divide polynomial  $$P(x) = x^{4} + 4x^{3} + 5x^{2} - 7x - 3, by \ S(x) = x^{2} - 1$$.



Let $$f(x)=x^2$$ and $$g(x)=2x+1$$ be two real functions. Find $$(f+g)(x),(f-g)(x),(fg)(x), \left(\dfrac{f}{g}\right)(x).$$



$$f=\{ (3,4),(4,3)\}\ \ g=\{(3,7),(4,8)\}$$  Find $$f-g$$



If $$f(x)=\dfrac {x-1}{x+1}$$ then show that

$$f\left (\dfrac {1}{x}\right)=-f(x)$$



If $$f(x)=(x-a)^2 (x-b)^2$$, find $$f(a+b)$$



If $$f(x)$$ be defined on $$[-2, 2]$$ and is given by $$f\left( x \right)=\begin{cases} -1,\quad -2\le x\le 0 \\ x-1,\quad 0<x\le 2 \end{cases}$$ and $$g(x)=f(|x|)+|f(x)|$$. Find $$g(x)$$



If $$f(x)=\dfrac {x-1}{x+1}$$ then show that $$f\left (\dfrac {1}{x}\right) =-{f(x)}$$



Let $$f, g$$ be two real functions defined by $$f(x)=\sqrt {x+1}$$ and $$g(x)=\sqrt {9-x^2}$$. Then, described each of the following functions:
$$f+g$$



Find $$f+g, f-g, cf (c \in R, c\neq 0), \ fg, \dfrac {1}{f}$$ and $$\dfrac {1}{g}$$ in each of the following:
$$f(x)=x^3+1$$ and $$g(x)=x+1$$



If $$f:R\rightarrow R,$$ defined as
$$f(x)=x^3+5$$
Find $$f^{-1}(x) $$



If $$f:R\rightarrow R,$$ defined as
$$f(x)=2x-3$$
Find $$f^{-1}(x) $$



If statement

$$P(n) : 1^2 + 3^2 + 5^2 + ...+ (2n-1)^2 = \dfrac{n(2n-1)(2n+1)}{3}$$,

then test the authenticity of $$P(4)$$.



Find a, b, c when $$f(x) = ax^2 + bx + c$$ and $$f(0) = 6, f(2) = 11, f(-3) = 6$$ Determine the value of $$f(1)$$.



 If $$f(x)$$ be a function such that $$ f(x-1)+f(x+1)=\sqrt{3} f(x) $$ and $$f(5) =10,$$ then the sum of digits of the value of $$ \displaystyle \sum_{r=0}^{19} f(5+12r)$$ is ......



If $$ f(x) \varepsilon [1, 2]$$ when $$x\varepsilon R$$ and for a fixed positive real number p, $$f(x+p)=1+\sqrt{2f(x)-{f(x)}^2}$$ for all $$x \varepsilon R$$ then prove that f(x) is a periodic function .



Class 11 Commerce Maths Extra Questions