Processing math: 100%

Relations And Functions - Class 11 Commerce Maths - Extra Questions

Find an explicit formula (in terms of nϵ N)for f(n)=(n1)+2n1



If f is a real function defined by f(x)=x1x+1, then prove that
f(2x)=3f(x)+1f(x)+3



Find the least value of x when 52x7.



If f(x)=x, then which of the following must be true?
(a) f(a+b)=f(a)+f(b)
(b) f(2a)=2f(a)
(c) f(a)=f(a)



If f(x)=x+7 and g(x)=x7,xR, find fog(6).



In  eq  x2+y=6x14
if x=0,1,2
then the values of y are



The length, l metres, of a garden is 78.5 metres, correct to the nearest half metre. Complete this statement about the value of l.
________ l < _______.



If y=f(x)=axbbxa, show that x=f(y)



Prove that f(1)+f(1)=f(0), if f(x)=x5+x32x3



Discuss the commutativity and associativity of binary operation . defined on A=Q{1} by the rule ab=ab+ab fo all a,bA. Also find the identity element of in A and hence find the invertible elements of A.



If f(x)=a+bx+cx2, show that
10f(x)dx=16[f(0)+4f(12)+f(1)] 



Divide polynomial  P(x)=x4+4x3+5x27x3,by S(x)=x21.



Let f(x)=x2 and g(x)=2x+1 be two real functions. Find (f+g)(x),(fg)(x),(fg)(x),(fg)(x).



f={(3,4),(4,3)}  g={(3,7),(4,8)}  Find fg



If f(x)=x1x+1 then show that

f(1x)=f(x)



If f(x)=(xa)2(xb)2, find f(a+b)



If f(x) be defined on [2,2] and is given by f(x)={1,2x0x1,0<x2 and g(x)=f(|x|)+|f(x)|. Find g(x)



If f(x)=x1x+1 then show that f(1x)=f(x)



Let f,g be two real functions defined by f(x)=x+1 and g(x)=9x2. Then, described each of the following functions:
f+g



Find f+g,fg,cf(cR,c0), fg,1f and 1g in each of the following:
f(x)=x3+1 and g(x)=x+1



If f:RR, defined as
f(x)=x3+5
Find f1(x)



If f:RR, defined as
f(x)=2x3
Find f1(x)



If statement

P(n):12+32+52+...+(2n1)2=n(2n1)(2n+1)3,

then test the authenticity of P(4).



Find a, b, c when f(x)=ax2+bx+c and f(0)=6,f(2)=11,f(3)=6 Determine the value of f(1).



 If f(x) be a function such that f(x1)+f(x+1)=3f(x) and f(5)=10, then the sum of digits of the value of 19r=0f(5+12r) is ......



If f(x)ε[1,2] when xεR and for a fixed positive real number p, f(x+p)=1+2f(x)f(x)2 for all xεR then prove that f(x) is a periodic function .



Class 11 Commerce Maths Extra Questions