Sequences And Series - Class 11 Commerce Maths - Extra Questions
Find the following sum. n∑r=1(6r2−2r+6)
1.2+2.3x+3.4x2+....∞(|x|<1).
Write the general term for the given series 1(n−1),13(n−3),15(n−5),....
Solve:
n∑r=1(6r2−2r+6)
The product of two consecutive positive numbers is 182. Find the numbers.
Evaluate 1+i2+i4+i6+...+i2n.
What is the sum of first 20 odd natural numbers?
Sum the following series 1+34+716+1564+31256+.... to infinity.
Find value of the sum 1sin45osin46o+1sin47osin48o+1sin49osin50o+.......+1sin133osin134o
Let a1,a2,...,an be fixed real numbers and define a function f(x)=(x−a1)(x−a2)....(x−an). What is lim? For some a\neq a_{1},a_{2},..., a_{n}, compute \displaystyle \lim _{ x\rightarrow a }f(x).
If \displaystyle\frac{1}{1!10!}+\frac{1}{2!9!}+\frac{1}{3!10!}+...+\frac{1}{1!10!}=\frac{2}{k!}(2^{k-1}-1) then find the value of k.
If \beta \, \neq \, 1 be any nth root of unity then prove that 1 \, + \, 3\beta \, + \, 5\beta^2 \, + \, ..... \, + \, n \, terms \, = \, -\dfrac{2n}{1 \, - \, \beta}
Let a sequence be defined by a_1 = 1, a_2 = 1 and, a_n=a_{n-1} + a_{n - 2} for all n > 2, find \dfrac{a_{n + 1}}{a_n} for n = 1, 2, 3, 4.
A sequence is defined by a_n = n^3 - 6n^2 + 11n - 6. Show that the first three terms of the sequence are zero and all other terms are positive.
Find sum of n terms of following series ? 1 + 3 x + 5 x ^ { 2 } + 7 x ^ { 3 } + \dots
For all real numbers a, b and positive integer n prove that: (a+b)^{n}=^{n}C_{0}a^{n}+^{n}C_{1}a^{n-1}b+^{n}C_{1}a^{n-2}b^{2}+..........+^{n}C_{n}b^{n}.
Prove that \dfrac {C_{1}}{C_{0}}+\dfrac {2C_{2}}{C_{1}}+\dfrac {3C_{3}}{C_{2}}+....+\dfrac {n.C_{n}}{C_{n-1}}=\dfrac {n(n+1)}{2}
Write the first five terms of the sequence and obtain the corresponding series: a_{1}=a_{2}=2,a_{n}=a_{n-1}-1,n > 2
Find the coefficient of x in the expansion of \left( 1+\dfrac { x }{ 1! } +\dfrac { x^2 }{ 2! } +\dfrac { x^3 }{ 3! } +...+\dfrac { x^n }{ n! } \right)
The sum, \sum _{ n=1 }^{ 7 }{ \cfrac { n\left( n+1 \right) \left( 2n+1 \right) }{ 4 } } is equal to ________
Determine whether the following series is convergent or divergent
If y=x+ x^2 + x^3 + ...\infty, where |x| < 1, then prove that
x= \left( \dfrac{y}{1+y} \right)
Prove that \left(\displaystyle a+\frac{1}{b+}\frac{1}{a+}\frac{1}{b+}\frac{1}{a+}....\right)\left(\displaystyle\frac{1}{b+}\frac{1}{a+}\frac{1}{b+}\frac{1}{a+}....\right)=\displaystyle \frac{a}{b}.
Find the sum of the infinite series 1 + \dfrac{2}{3}.\dfrac{1}{2} + \dfrac{2.5}{3.6}(\dfrac{1}{2})^{2} + \dfrac{2.5.8}{3.6.9}(\dfrac{1}{2})^{3} + ....\infty
Find sum of 3+33+333+3333+....... up to n terms.
Find the sum of the series (1^2+1)1!+(2^2+1)2!+(3^2+1)3!+......(n^2+1)n!
3+33+333+.....+n terms.
The sum of the series \displaystyle \sum _{ k=1 }^{ 62 }{ \frac { 1 }{ \left( k+2 \right) \sqrt { k+1 } +\left( k+1 \right) \sqrt { k+2 } } } .
How many three-digit numbers are there with no digit repeated?
Find the sum of the series 1.3^{2}+2.5^{2}+3.7^{2}+ to n terms.