The product of two consecutive positive numbers is $$182$$. Find the numbers.
Evaluate $$1+i^{2}+i^{4}+i^{6}+...+i^{2n}$$.
What is the sum of first 20 odd natural numbers?
Sum the following series $$1 + \dfrac {3}{4} + \dfrac {7}{16} + \dfrac {15}{64} + \dfrac {31}{256} + ....$$ to infinity.
Find value of the sum $$\displaystyle \frac{1}{sin45^o sin 46^o} + \frac{1}{sin47^o sin 48^o} + \frac{1}{sin49^o sin 50^o} + ....... + \frac{1}{sin133^o sin 134^o}$$
Let $$a_{1},a_{2},..., a_{n}$$ be fixed real numbers and define a function $$f(x)=(x-a_{1})(x-a_{2})....(x-a_{n})$$. What is $$\displaystyle \lim _{ x\rightarrow a_{1} }f(x)$$? For some $$a\neq a_{1},a_{2},..., a_{n}$$, compute $$\displaystyle \lim _{ x\rightarrow a }f(x)$$.
If $$\displaystyle\frac{1}{1!10!}+\frac{1}{2!9!}+\frac{1}{3!10!}+...+\frac{1}{1!10!}=\frac{2}{k!}(2^{k-1}-1)$$ then find the value of k.
If $$\beta \, \neq \, 1$$ be any nth root of unity then prove that $$1 \, + \, 3\beta \, + \, 5\beta^2 \, + \, ..... \, + \, n \, terms \, = \, -\dfrac{2n}{1 \, - \, \beta}$$
Let a sequence be defined by $$a_1 = 1, a_2 = 1$$ and, $$a_n=a_{n-1} + a_{n - 2}$$ for all $$n > 2$$, find $$\dfrac{a_{n + 1}}{a_n}$$ for $$n = 1, 2, 3, 4$$.
A sequence is defined by $$a_n = n^3 - 6n^2 + 11n - 6$$. Show that the first three terms of the sequence are zero and all other terms are positive.
Find sum of $$n$$ terms of following series ? $$1 + 3 x + 5 x ^ { 2 } + 7 x ^ { 3 } + \dots$$
For all real numbers $$a, b$$ and positive integer $$n$$ prove that: $$(a+b)^{n}=^{n}C_{0}a^{n}+^{n}C_{1}a^{n-1}b+^{n}C_{1}a^{n-2}b^{2}+..........+^{n}C_{n}b^{n}$$.
Prove that $$\dfrac {C_{1}}{C_{0}}+\dfrac {2C_{2}}{C_{1}}+\dfrac {3C_{3}}{C_{2}}+....+\dfrac {n.C_{n}}{C_{n-1}}=\dfrac {n(n+1)}{2}$$
Write the first five terms of the sequence and obtain the corresponding series: $$a_{1}=a_{2}=2,a_{n}=a_{n-1}-1,n > 2$$
If $$y=x+ x^2 + x^3 + ...\infty$$, where $$|x| < 1$$, then prove that
$$x= \left( \dfrac{y}{1+y} \right)$$
Prove that $$\left(\displaystyle a+\frac{1}{b+}\frac{1}{a+}\frac{1}{b+}\frac{1}{a+}....\right)\left(\displaystyle\frac{1}{b+}\frac{1}{a+}\frac{1}{b+}\frac{1}{a+}....\right)=\displaystyle \frac{a}{b}$$.
Find the sum of the infinite series $$1 + \dfrac{2}{3}.\dfrac{1}{2} + \dfrac{2.5}{3.6}(\dfrac{1}{2})^{2} + \dfrac{2.5.8}{3.6.9}(\dfrac{1}{2})^{3} + ....\infty$$
Find sum of $$3+33+333+3333+$$....... up to n terms.
Find the sum of the series $$(1^2+1)1!+(2^2+1)2!+(3^2+1)3!+......(n^2+1)n!$$
$$3+33+333+.....+$$n terms.
The sum of the series $$\displaystyle \sum _{ k=1 }^{ 62 }{ \frac { 1 }{ \left( k+2 \right) \sqrt { k+1 } +\left( k+1 \right) \sqrt { k+2 } } } $$.
How many three-digit numbers are there with no digit repeated?
Find the sum of the series $$1.3^{2}+2.5^{2}+3.7^{2}+$$ to $$n$$ terms.