Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

Sequences And Series - Class 11 Commerce Maths - Extra Questions

Find the following sum.
nr=1(6r22r+6)



1.2+2.3x+3.4x2+....(|x|<1).



Write the general term for the given series 1(n1),13(n3),15(n5),....



Solve:

nr=1(6r22r+6)



The product of two consecutive positive numbers is 182. Find the numbers.



Evaluate 1+i2+i4+i6+...+i2n.



What is the sum of first 20 odd natural numbers?



Sum the following series
1+34+716+1564+31256+.... to infinity.



Find value of the sum 1sin45osin46o+1sin47osin48o+1sin49osin50o+.......+1sin133osin134o



Let a1,a2,...,an be fixed real numbers and define a function f(x)=(xa1)(xa2)....(xan).
What is lim? For some a\neq a_{1},a_{2},..., a_{n}, compute \displaystyle \lim _{ x\rightarrow a }f(x).



If \displaystyle\frac{1}{1!10!}+\frac{1}{2!9!}+\frac{1}{3!10!}+...+\frac{1}{1!10!}=\frac{2}{k!}(2^{k-1}-1) then find the value of k.



If \beta \, \neq \, 1 be any nth root of unity then prove that 1 \, + \, 3\beta \, + \, 5\beta^2 \, + \, ..... \, + \, n \, terms \, = \, -\dfrac{2n}{1 \, - \, \beta}



Let a sequence be defined by a_1 = 1, a_2 = 1 and, a_n=a_{n-1} + a_{n - 2} for all n > 2,
find \dfrac{a_{n + 1}}{a_n} for n = 1, 2, 3, 4.



A sequence is defined by a_n = n^3 - 6n^2 + 11n - 6. Show that the first three terms of the sequence are zero and all other terms are positive.



\underset{n \rightarrow \infty}{lim} \dfrac{1^P + 2^P + 3^P + ....+ n^P}{n^{P+ 1}} equals-



Evaluate: \sum_\limits{r=1}^n (3r-1)(r+1)



Evaluate \sum _{ k=1 }^{ 11 }{ \left( 2+{ 3 }^{ k } \right)  }



Solve :
\dfrac {1}{1.2} + \dfrac {1}{2.3} + ...... + \dfrac {1}{n(n+1)} = ?  



Obtain     \sum\limits_{r = 2}^{10} {\left( {4{r^2} - 28r + 4a} \right)}



Find the sum to n terms of the series
1.2^{2}+2.3^{2}+3.4^{2}+...



Find the sum to n terms of the sequence, 8, 88, 888, 8888,.....



\cfrac{1}{1.3.5}+\cfrac{1}{3.5.7}+.... to n terms.



Find the sum to n terms of the series, whose nth term is given by {(2n-1)}^{2}.



Find the sum of series upto n terms whose { n }^{ th } term is {\left( {2n - 1} \right)^2}



Find the sum of 1 + 5 + {5^2} + .... upto 8 terms.



Find the sum of the series 2 ^ { 2 } + 4 ^ { 2 } + 6 ^ { 2 } + \ldots + ( 2 n ) ^ { 2 }



Show that 1^{2}+(1^{2}+2^{2})+(1^{2}+2^{2}+3^{2})+........ upto n terms =\dfrac{n(n+1)^{2}(n+2)}{12}, \forall n \in N



Find the sum of the series whose n^{th} term is :
2n^{3}+3n^{2}-1



\left( r+1 \right) ^{ 2 }+\left( r+2 \right) ^{ 2 }+....+{ n }^{ 2 }



Find sum of  n  terms of following series ?
1 + 3 x + 5 x ^ { 2 } + 7 x ^ { 3 } + \dots



For all real numbers a, b and positive integer n prove that:
(a+b)^{n}=^{n}C_{0}a^{n}+^{n}C_{1}a^{n-1}b+^{n}C_{1}a^{n-2}b^{2}+..........+^{n}C_{n}b^{n}.



Prove that 
\dfrac {C_{1}}{C_{0}}+\dfrac {2C_{2}}{C_{1}}+\dfrac {3C_{3}}{C_{2}}+....+\dfrac {n.C_{n}}{C_{n-1}}=\dfrac {n(n+1)}{2}



Write the first five terms of the sequence and obtain the corresponding series:
a_{1}=a_{2}=2,a_{n}=a_{n-1}-1,n > 2



Evaluate:
\dfrac{1+\dfrac{1}{2!}+\dfrac{1}{3!}+.......}{1+\dfrac{1}{3!}+\dfrac{1}{5!}+.......}.



Find the coefficient of x in the expansion of \left( 1+\dfrac { x }{ 1! } +\dfrac { x^2 }{ 2! } +\dfrac { x^3 }{ 3! } +...+\dfrac { x^n }{ n! }  \right) 



The sum, \sum _{ n=1 }^{ 7 }{ \cfrac { n\left( n+1 \right) \left( 2n+1 \right)  }{ 4 }  } is equal to ________



Determine whether the following series is convergent or divergent
\displaystyle \frac {1}{1^p}+\frac {1}{3^p}+\frac {1}{5^p}+\frac {1}{7^p}+.....



Find the general term and the sum of n terms of the series:
2,5,12,31,86,......



Determine whether the following series is convergent or divergent
\displaystyle 1+ \frac {1}{2^2}+\frac {2^2}{3^3}+\frac {3^3}{4^4}+\frac {4^4}{5^5}....



Determine whether the following series is convergent or divergent
\displaystyle1 + \frac {2}{5}x+\frac {6}{9}x^2+\frac {14}{17}x^3+....+\frac {2^n-2}{2^n+1}x^{n-1}+....



If y=x+ x^2 + x^3 + ...\infty, where |x| < 1, then prove that

x= \left( \dfrac{y}{1+y} \right)



Prove that \left(\displaystyle a+\frac{1}{b+}\frac{1}{a+}\frac{1}{b+}\frac{1}{a+}....\right)\left(\displaystyle\frac{1}{b+}\frac{1}{a+}\frac{1}{b+}\frac{1}{a+}....\right)=\displaystyle \frac{a}{b}.



Find the sum of the infinite series 1 + \dfrac{2}{3}.\dfrac{1}{2} + \dfrac{2.5}{3.6}(\dfrac{1}{2})^{2} + \dfrac{2.5.8}{3.6.9}(\dfrac{1}{2})^{3} + ....\infty



Find sum of  3+33+333+3333+....... up to n terms.



Find the sum of the series (1^2+1)1!+(2^2+1)2!+(3^2+1)3!+......(n^2+1)n!



3+33+333+.....+n terms.



The sum of the series \displaystyle \sum _{ k=1 }^{ 62 }{ \frac { 1 }{ \left( k+2 \right) \sqrt { k+1 } +\left( k+1 \right) \sqrt { k+2 }  }  } .



How many three-digit numbers are there with no digit repeated?



Find the sum of the series 1.3^{2}+2.5^{2}+3.7^{2}+ to n terms.



Solve:
\frac{1}{{2.5}} + \frac{1}{{5.8}} + \frac{1}{{8.11}} + ...\frac{1}{{(3n - 1)(3n + 2)}}



Class 11 Commerce Maths Extra Questions