Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js

Trigonometric Functions - Class 11 Commerce Maths - Extra Questions

sinθ=cosθ for all values of θ
Enter 1 for true and 0 for false



cos(AB)=



Convert 250 into Radian measure.



If 7sin2x+3cos2x=4, show that tanx=13



Solve
cos(AB)cos(180(A+B)=0



The value of cosθ increases as θ increases.
Enter 1 for true and 0 for false



Find the value of θ laying between 0 and π2 and satisfying the equation

 |1+cos2θsin2θ4sin4θcos2θ1+sin2θ4sin4θcos2θsin2θ1+4sin4θ|=0.

If the value of θ=aπb, then find the value of (b3)a



If Δ=|1sinθ1sinθ1sinθ1sinθ1|;0θ<2π then Δ[a,b] Find ba?



The general solution of 4tan2θ=3sec2θ  is θ=nπ±πm. Then, find the value of m.



Solve sin5x.cos3x=sin6x.cos2x. then nπ2,nI or nπ±π6,nI
If true then enter 1 and if false then enter 0



Solve sinx+cosx=2, then  x=2nπ+π4,nI
If true then enter 1 and if false then enter 0



Solve sinx+cosx=1+sinx.cosx, then 2nπ±π4 
If true then enter 1 and if false then enter 0



Find the general solution of the equation 4cos2x=1



Find the general solution of cosx+sinx=1



If α+βγ=π, and sin2α+sin2βsin2γ=λsinαsinβcosγ, then write the value of λ.



Find the domain of definition of the following function:
y=arccos2x+122x



How to calculate sin37



Solve the following equation:
tanx+tan2x+tan3x=0



Prove that sin9x+sin7x+sin5x+sin3xcos9x+cos7x+cos5x+cos3x=tan6x



Prove that sin(AB)=sinAcosBcosAsinB



Find the general solution of the following  questions
cosx=2x
sin2x+cosx=0.



Find the general solution for each of the following equation:
sin2x+cosx=0



Solve sinx+3cosx=2



Prove that
If 2sin(θ+π3)=cos(θπ6)then,tanθ+3=0



Prove: 1+secAsecA=sin2A1cosA



If \cos (65^0-A)\cos(25^0+B)- \sin(65^0-A) \sin( 25^0+B)= \sin (m+A-B).Find m



Convert the angles:
a) 4.4^{c}
b) -\frac{9\pi}{2}^{c}
into degree.



ifsec\theta +tan\theta =p\quad then\quad the\quad value\quad of\quad cosec\theta 



Class 11 Commerce Maths Extra Questions