JEE Questions for Maths Complex Numbers Quiz 4 - MCQExams.com

The complex number z = x + iy which satisfies the equation
Maths-Complex Numbers-14787.png
  • the X-axis
  • the straight line y = 3
  • a circle passing through origin
  • None of the above
If the complex numbers z1, z2 and z2 denote the vertices of an isosceles right angled triangle, right angled at z 1, then(z1 - z2)2 + (z1 - z3) 2 is equal to
  • 0
  • (z2 + z3)2
  • 2
  • 3
  • (z2 - z3)2
If z1 and z2 are two fixed complex numbers in the argand plane, and z is an arbitrary point satisfying |z - z1|+ |z - z3| = 2|z1 - z2|. Then, the locus of z will
  • an ellipse
  • a straight line joining z1 and z2
  • a parabola
  • a bisector of the line segment joining z1 and z2
If z1 is a fixed point on the circle of radius 1 centred at the origin in the argand plane and z1 ≠ ± 1. Consider an equilateral triangle inscribed in the circle with z1,z2, z3 as the vertices taken in the counter clockwise direction. Then, z2 z3 is equal to
  • z1 2
  • z1 3
  • z1 4
  • z1
Suppose that z1, z2 , z3 are three vertices of an equilateral 1 triangle in the argand plane. If α = 1/2(√3 - i) and β be a non-zero complex number. Then, the points α z1 +β, αz2 +β, αz3 + β will be
  • the vertices of an equilateral triangle
  • the vertices of an isosceles triangle
  • collinear
  • the vertices of a scalene triangle
If z is any complex number satisfying |z - 3 - 2i | ≤ 2, then the minimum value of |2z - 6 + 5i|is
  • 2
  • 1
  • 3
  • 5
If z1 and z2 are two roots of the equation z2 + az + b= 0, z being complex number. Further assume that the origin, z1 and z2 form an equilateral triangle. Then
  • a2 = b
  • a2 = 2b
  • a2 = 3b
  • a2 = 4b
If α and β are the roots of x2 — 6x — 2 = 0, with α > β and ann - βn n for n ≥ 1, then the value of
Maths-Complex Numbers-14795.png
  • 1
  • 2
  • 3
  • 4
If z = x + iy is a complex number where x and y are integers. Then, the area of the rectangle whose vertices are the roots of the equation
Maths-Complex Numbers-14797.png
  • 48
  • 32
  • 40
  • 80
If the area of triangle on the argand plane formed by the complex numbers -z, iz, z - iz is 600 sq units, then |z| is equal to
  • 10
  • 20
  • 30
  • 40
If P is the point in the argand diagram corresponding to the complex number √3 + i and if OPQ is an isosceles right angled triangle, right angled at 0, then Q represents the complex number
  • - 1 + i √3 or 1 - √3
  • 1± i√3
  • √3 -1 or 1 - i√3
  • - 1 ± i√3
The center of a regular hexagon is at the point z = i. If one of its vertices is at 2 + i, then the adjacent vertices of 2 + i are at the points
  • 1 ± 2i
  • i + 1 ± √3
  • 2 + i(1±√3 )
  • 1 + i (1±√3)
  • 1 - i(1±√3 )

Maths-Complex Numbers-14802.png
  • a finite set
  • an infinite set
  • an empty set
  • none of these

Maths-Complex Numbers-14804.png
  • an ellipse
  • a parabola
  • a circle
  • a straight line through point -a
The points representing complex number z for which |z — 3| = |z — 5| lie on the locus given by
  • an ellipse
  • a circle
  • a straight line
  • None of these
For three complex numbers 1- i, i, l + i which of the following is correct ?
  • They form a right angled triangle
  • They are collinear
  • They form an equilateral triangle
  • They form an isosceles triangle
. Let z1 , z2 and z3 be the affixes of the vertices of a triangle having the circumcentre at the origin. If z is the affix of its orthocentre, then z is equal to

  • Maths-Complex Numbers-14808.png
  • 2)
    Maths-Complex Numbers-14809.png

  • Maths-Complex Numbers-14810.png
  • None of these
The points representing the complex numbers z, for which |z - a2| + |z + a|2 = b2 lie on
  • a straight line
  • a circle
  • a parabola
  • a hyberbola
The equation of the locus of z such that
Maths-Complex Numbers-14813.png
  • 3x2 + 3y2 + 10y - 3 = 0
  • 3x2 + 3y2 + 10y + 3 = 0
  • 3x2 - 3y2 + 10y - 3 = 0
  • x2 + y2 - 5y + 3 = 0
If |z + 4| ≤ 3, then the maximum value of |z + 1|is
  • 4
  • 10
  • 6
  • 0
For all complex numbers z1, z2 satisfying |z1|= 12 and |z2 - 3 - 4i| = 5, the minimum value of |z1 - z2|is
  • 4
  • 3
  • 1
  • 2

Maths-Complex Numbers-14817.png
  • 2/√21
  • 1/√21
  • √3
  • √21

Maths-Complex Numbers-14819.png
  • a parabola
  • a straight line
  • a circle
  • an ellipse
The radius of the circle
Maths-Complex Numbers-14821.png
  • 13/12
  • 5/12
  • 5
  • 625
The points z1, z2, z3 and z4 in the complex plane are the vertices of a parallelogram taken in order, iff
  • z1 + z4 = z2 + z3
  • z1 + z3 = z2 + z4
  • z1 + z2 = z3 + z4
  • None of the above

Maths-Complex Numbers-14824.png
  • 3
  • 4
  • 5
  • 6

Maths-Complex Numbers-14826.png
  • i
  • -i

  • Maths-Complex Numbers-14827.png

  • Maths-Complex Numbers-14828.png

Maths-Complex Numbers-14830.png
  • 1
  • -1
  • 2
  • -2

Maths-Complex Numbers-14831.png

  • Maths-Complex Numbers-14832.png
  • 2)
    Maths-Complex Numbers-14833.png

  • Maths-Complex Numbers-14834.png

  • Maths-Complex Numbers-14835.png
Let Z1 and Z2 be two distinct complex numbers and Z = (1 - t)Z1 + tZ2 for some real number t with 0 < t < 1. If arg (w) denotes the principal argument of a non - zero complex number w, then
  • |Z1 - Z2| + |Z - Z2| = |Z1 - Z2|
  • arg (Z - Z= arg (Z - Z2)

  • Maths-Complex Numbers-14837.png
  • All of these

Maths-Complex Numbers-14839.png
  • A = 2, 3 , B = 1, 5 C = 2, 3, 4, 5
  • A = 1, B = 2, 3 C = 1, 2 D = 3, 4, 5
  • A = 2, 3 B = 1, 2, 3 C = 2, 3, 4 D = 1, 2, 5
  • None of the above
Which of the following statement(s) is/are false

  • Maths-Complex Numbers-14840.png
  • 2)
    Maths-Complex Numbers-14841.png

  • Maths-Complex Numbers-14842.png
  • none of these

Maths-Complex Numbers-14843.png

  • Maths-Complex Numbers-14844.png
  • 2)
    Maths-Complex Numbers-14845.png

  • Maths-Complex Numbers-14846.png
  • none of these
If arg(z) < 0, then arg(−z) − arg z =
  • π
  • − π

  • Maths-Complex Numbers-14848.png

  • Maths-Complex Numbers-14849.png
If z1 and z2 be the nth roots of unity which subtend right angle at the origin. Then n must be of the form
  • 4 k + 1
  • 4 k + 2
  • 4 k + 3
  • 4 k
Length of the line segment joining the points –1 –i and 2 + 3i is
  • –5
  • 15
  • 5
  • 25

Maths-Complex Numbers-14853.png

  • Maths-Complex Numbers-14854.png
  • 2)
    Maths-Complex Numbers-14855.png

  • Maths-Complex Numbers-14856.png
  • None of these
If |z + 4| ≤ 3, then the maximum value of |z + 1| is
  • 4
  • 10
  • 6
  • 0
If |z| = 2, then the points representing the complex numbers -1+ 5z will lie on a
  • Circle
  • Straight line
  • Parabola
  • None of these
In the Argand plane, the vector z = 4 – 3i is turned in the clockwise sense through 180o and stretched three times. The complex number represented by the new vector is
  • 12 + 9i
  • 12 – 9i
  • –12 –9i
  • –12 + 9i
POQ is a straight line through of origin O,P and Q represent the complex numbers a + ib and c + id respectively and OP = OQ ,then
  • |a + ib| = |c + id|
  • a + c = b + d
  • arg (a + ib) = arg(c + id)
  • None of these
  • Both (and (2)

Maths-Complex Numbers-14862.png
  • 2
  • 3
  • 4
  • 6
If |z - 2|/|z - 3| = 2 represents a circle, then its radius is equal to
  • 1
  • 1/3
  • 3/4
  • 2/3

Maths-Complex Numbers-14865.png
  • 0
  • 2
  • 7
  • 17
If z a complex number in the Argand plane, then the equation |z – 2| + |z + 2| = 8 represents
  • Parabola
  • Ellipse
  • Hyperbola
  • Circle
If z1 = 1 + i, z2 = –2 + 3i and z3 = ai/3, where i2 = –1, are collinear then the value of a is
  • –1
  • 3
  • 4
  • 5

Maths-Complex Numbers-14869.png
  • Straight line
  • Circle
  • Parabola
  • None of these

Maths-Complex Numbers-14871.png
  • Circle
  • straight line
  • Parabola
  • None of these
A point z moves on Argand diagram in such a way that |z - 3i| = 2, then its locus will be
  • y - axis
  • A straight line
  • A circle
  • None of these

Maths-Complex Numbers-14874.png
  • A circle
  • An ellipse
  • A straight line
  • A parabola
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Maths Quiz Questions and Answers