JEE Questions for Maths Conic Section Quiz 10 - MCQExams.com


Maths-Conic Section-17896.png

  • Maths-Conic Section-17897.png
  • 2)
    Maths-Conic Section-17898.png

  • Maths-Conic Section-17899.png

  • Maths-Conic Section-17900.png

Maths-Conic Section-17902.png

  • Maths-Conic Section-17903.png
  • 2)
    Maths-Conic Section-17904.png

  • Maths-Conic Section-17905.png

  • Maths-Conic Section-17906.png

Maths-Conic Section-17908.png

  • Maths-Conic Section-17909.png
  • 2)
    Maths-Conic Section-17910.png

  • Maths-Conic Section-17911.png

  • Maths-Conic Section-17912.png
The line x + y = 6 is normal to the parabola y2 = 8x at the point
  • (4, 2)
  • (2, 4)
  • (2, 2)
  • (3, 3)

Maths-Conic Section-17915.png
  • –4
  • 4
  • 0
  • 6

Maths-Conic Section-17917.png

  • Maths-Conic Section-17918.png
  • 2)
    Maths-Conic Section-17919.png

  • Maths-Conic Section-17920.png

  • Maths-Conic Section-17921.png
If the latus rectum of an ellipse be equal to half of its minor axis, then its eccentricity is

  • Maths-Conic Section-17923.png
  • 2)
    Maths-Conic Section-17924.png

  • Maths-Conic Section-17925.png

  • Maths-Conic Section-17926.png
If distance between the directrices be thrice the distance between foci, then eccentricity of ellipse is

  • Maths-Conic Section-17928.png
  • 2)
    Maths-Conic Section-17929.png

  • Maths-Conic Section-17930.png

  • Maths-Conic Section-17931.png
The equation of the ellipse whose centre is at origin and which passes through the points (–3,and (2, –2)

  • Maths-Conic Section-17933.png
  • 2)
    Maths-Conic Section-17934.png

  • Maths-Conic Section-17935.png

  • Maths-Conic Section-17936.png
If the eccentricity of an ellipse be 5/8 and the distance between its foci be 10, then its latus rectum is

  • Maths-Conic Section-17938.png
  • 12
  • 15

  • Maths-Conic Section-17939.png
If the foci and vertices of an ellipse be (±1,and (±2, 0), then the minor axis of the ellipse is

  • Maths-Conic Section-17941.png
  • 2
  • 4

  • Maths-Conic Section-17942.png
The equations of the directrices of the ellipse 16x2 + 25y2 = 400 are
  • 2x = ± 25
  • 5x = ±9
  • 3x = ± 10
  • None of these
The eccentricity of an ellipse is 2/3, latus rectum is 5 and centre is (0, 0). The equation of the ellipse is

  • Maths-Conic Section-17945.png
  • 2)
    Maths-Conic Section-17946.png

  • Maths-Conic Section-17947.png

  • Maths-Conic Section-17948.png
The latus rectum of an ellipse is 10 and the minor axis is equal to the distance between the foci. The equation of the ellipse is

  • Maths-Conic Section-17950.png
  • 2)
    Maths-Conic Section-17951.png

  • Maths-Conic Section-17952.png
  • None of these

Maths-Conic Section-17954.png
  • 8
  • 12
  • 18
  • 24

Maths-Conic Section-17956.png
  • 2
  • 4
  • 6
  • 8
The equation of the ellipse whose vertices are (±5,and foci are (±4,is

  • Maths-Conic Section-17958.png
  • 2)
    Maths-Conic Section-17959.png

  • Maths-Conic Section-17960.png
  • None of these
The equation of the ellipse whose foci are (±5,and one of its directrix is 5x = 36 is

  • Maths-Conic Section-17962.png
  • 2)
    Maths-Conic Section-17963.png

  • Maths-Conic Section-17964.png
  • None of these
If the eccentricity of an ellipse be 1/√2, then the latus rectum is equal to its
  • Minor axis
  • Semi-minor axis
  • Major axis
  • Semi-major axis

Maths-Conic Section-17967.png

  • Maths-Conic Section-17968.png
  • 2)
    Maths-Conic Section-17969.png

  • Maths-Conic Section-17970.png

  • Maths-Conic Section-17971.png

Maths-Conic Section-17973.png

  • Maths-Conic Section-17974.png
  • 2)
    Maths-Conic Section-17975.png

  • Maths-Conic Section-17976.png

  • Maths-Conic Section-17977.png

Maths-Conic Section-17979.png

  • Maths-Conic Section-17980.png
  • 2)
    Maths-Conic Section-17981.png

  • Maths-Conic Section-17982.png

  • Maths-Conic Section-17983.png
If the distance between the foci of an ellipse be equal to its minor axis, then its eccentricity is

  • Maths-Conic Section-17985.png
  • 2)
    Maths-Conic Section-17986.png

  • Maths-Conic Section-17987.png

  • Maths-Conic Section-17988.png
For each point (x, y) on an ellipse the num of the distances from (x, y) to the points (2,and (–2,is 8. Then the positive value of x so that (x,lies on the ellipse is
  • 2
  • 2)
    Maths-Conic Section-17990.png

  • Maths-Conic Section-17991.png
  • 4
  • 0
The length of major and minor axis of an ellipse are 10 and 8 respectively and its major axis along the y-axis. The equation of the ellipse referred to its centre as origin is

  • Maths-Conic Section-17993.png
  • 2)
    Maths-Conic Section-17994.png

  • Maths-Conic Section-17995.png

  • Maths-Conic Section-17996.png
If the centre, one of the foci and semi-major axis of an ellipse be (0, 0), (0,and 5 then its equation is

  • Maths-Conic Section-17998.png
  • 2)
    Maths-Conic Section-17999.png

  • Maths-Conic Section-18000.png
  • None of these
The equation of the ellipse whose one of the vertices is (0,and the corresponding directrix is y = 12 is

  • Maths-Conic Section-18002.png
  • 2)
    Maths-Conic Section-18003.png

  • Maths-Conic Section-18004.png
  • None of these
The equation 2x2 + 3y2 = 30 represents
  • A circle
  • An ellipse
  • A hyperbola
  • A parabola
The equation of the ellipse whose latus rectum is 8 and whose eccentricity is 1/√2, referred to the principal axis of coordinates is

  • Maths-Conic Section-18007.png
  • 2)
    Maths-Conic Section-18008.png

  • Maths-Conic Section-18009.png

  • Maths-Conic Section-18010.png
Eccentricity of the ellipse whose latus rectum is equal to the distance between two focus points is

  • Maths-Conic Section-18012.png
  • 2)
    Maths-Conic Section-18013.png

  • Maths-Conic Section-18014.png

  • Maths-Conic Section-18015.png
The ellipse x2 + 4y2 = 4 is inscribed in a rectangle aligned with the coordinate axes, which in turn is inscribed in another ellipse that passes through the point (4, 0). Then the equation of the ellipse is

  • Maths-Conic Section-18017.png
  • 2)
    Maths-Conic Section-18018.png

  • Maths-Conic Section-18019.png

  • Maths-Conic Section-18020.png
A point ratio of whose distance from a fixed point and line x = 9/2 is always 2 : 3. Then locus of the point will be
  • Hyperbola
  • Ellipse
  • Parabola
  • Circle

Maths-Conic Section-18023.png
  • An ellipse
  • A hyperbola
  • A parabola
  • A circle
The length of the latus rectum of an ellipse is 1/3 of the major axis. Its eccentricity is

  • Maths-Conic Section-18025.png
  • 2)
    Maths-Conic Section-18026.png

  • Maths-Conic Section-18027.png

  • Maths-Conic Section-18028.png
An ellipse is described by using an endless string which is passed over two pins. If the axes are 6 cm and 4 cm, the necessary length of the string and the distance between the pins respectively in cm are

  • Maths-Conic Section-18030.png
  • 2)
    Maths-Conic Section-18031.png

  • Maths-Conic Section-18032.png
  • None of these

Maths-Conic Section-18034.png
  • r > 2
  • 2 < r < 5
  • r > 5
  • None of these

Maths-Conic Section-18036.png

  • Maths-Conic Section-18037.png
  • 2)
    Maths-Conic Section-18038.png

  • Maths-Conic Section-18039.png

  • Maths-Conic Section-18040.png

Maths-Conic Section-18042.png

  • Maths-Conic Section-18043.png
  • 2)
    Maths-Conic Section-18044.png

  • Maths-Conic Section-18045.png

  • Maths-Conic Section-18046.png

Maths-Conic Section-18048.png

  • Maths-Conic Section-18049.png
  • 2)
    Maths-Conic Section-18050.png

  • Maths-Conic Section-18051.png

  • Maths-Conic Section-18052.png
The equation of the ellipse whose one focus is at (4,and whose eccentricity is 4/5 is

  • Maths-Conic Section-18054.png
  • 2)
    Maths-Conic Section-18055.png

  • Maths-Conic Section-18056.png

  • Maths-Conic Section-18057.png

Maths-Conic Section-18059.png
  • (±3, 0)
  • (0, ±3)
  • (3, –3)
  • (–3, 3)
The focus of the point which moves such that the ratio of its distance from two fixed point in the plane is always a constant k (
  • Circle
  • Hyperbola
  • Ellipse
  • Straight line
The line passing through the extremity A of the major axis and extremity B of the minor axis of the ellipse x2 + 9y2 = 9 meets its auxiliary circle at the point M. Then the area of the triangle with vertices at A, M and the origin O is

  • Maths-Conic Section-18061.png
  • 2)
    Maths-Conic Section-18062.png

  • Maths-Conic Section-18063.png

  • Maths-Conic Section-18064.png
The normal at a point P on the ellipse x2 + 4y2 = 16 meets the x-axis at Q. If M is the mid point of the line segment PQ, then the locus of M intersects the latus rectum of the given ellipse at the points

  • Maths-Conic Section-18066.png
  • 2)
    Maths-Conic Section-18067.png

  • Maths-Conic Section-18068.png

  • Maths-Conic Section-18069.png

Maths-Conic Section-18071.png
  • Ellipse
  • Parabola
  • Hyperbola
  • None of these

Maths-Conic Section-18073.png
  • 8
  • 6
  • 10
  • 12

Maths-Conic Section-18075.png

  • Maths-Conic Section-18076.png
  • 2)
    Maths-Conic Section-18077.png

  • Maths-Conic Section-18078.png

  • Maths-Conic Section-18079.png
For an ellipse with eccentricity ½ the centre is at the origin. If one directrix is x = 4, then the equation of the ellipse is

  • Maths-Conic Section-18081.png
  • 2)
    Maths-Conic Section-18082.png

  • Maths-Conic Section-18083.png

  • Maths-Conic Section-18084.png
Equation of the ellipse whose foci are (2,and (4,and the major axis is of length 10 is

  • Maths-Conic Section-18086.png
  • 2)
    Maths-Conic Section-18087.png

  • Maths-Conic Section-18088.png

  • Maths-Conic Section-18089.png

Maths-Conic Section-18091.png

  • Maths-Conic Section-18092.png
  • 2)
    Maths-Conic Section-18093.png

  • Maths-Conic Section-18094.png

  • Maths-Conic Section-18095.png
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Maths Quiz Questions and Answers