JEE Questions for Maths Conic Section Quiz 14 - MCQExams.com

The locus of the point of intersection of lines (x + y)t = a and x – y = at, where t is the parameter, is
  • A circle
  • An ellipse
  • A rectangular hyperbola
  • None of these
The equation of the hyperbola referred to its axes as axes of coordinate and whose distance between the foci is 16 and eccentricity is √2 is

  • Maths-Conic Section-18746.png
  • 2)
    Maths-Conic Section-18747.png

  • Maths-Conic Section-18748.png

  • Maths-Conic Section-18749.png

Maths-Conic Section-18751.png
  • 1
  • 5
  • 7
  • 9

Maths-Conic Section-18753.png

  • Maths-Conic Section-18754.png
  • 2)
    Maths-Conic Section-18755.png

  • Maths-Conic Section-18756.png
  • None of these

Maths-Conic Section-18758.png
  • Parabola
  • Rectangular hyperbola
  • Hyperbola
  • Ellipse
The reciprocal of the eccentricity of rectangular hyperbola, is
  • 2
  • 2)
    Maths-Conic Section-18760.png

  • Maths-Conic Section-18761.png

  • Maths-Conic Section-18762.png

Maths-Conic Section-18764.png
  • 9
  • 4
  • 5
  • 1
If transverse and conjugate axes of a hyperbola are equal, then its eccentricity

  • Maths-Conic Section-18766.png
  • 2)
    Maths-Conic Section-18767.png

  • Maths-Conic Section-18768.png
  • 2

Maths-Conic Section-18770.png
  • 5
  • 4
  • –5
  • None of these

Maths-Conic Section-18772.png

  • Maths-Conic Section-18773.png
  • 2)
    Maths-Conic Section-18774.png

  • Maths-Conic Section-18775.png

  • Maths-Conic Section-18776.png

Maths-Conic Section-18778.png
  • Centre only
  • Centre, foci and directories
  • Centre, foci and vertices
  • Centre and vertices only

Maths-Conic Section-18780.png
  • 192
  • 64
  • 16
  • 32

Maths-Conic Section-18782.png
  • A hyperbola if k > 8
  • An ellipse if k > 8
  • A hyperbola if 8 < k < 12
  • None of the above

Maths-Conic Section-18784.png
  • (–6, 3)
  • (6, 3)
  • (6, 3)
  • (6, –3)
  • (√24, 0)
The equation of a hyperbola whose asymptotes are 3x ± 5y = 0 and vertices are (±5,is

  • Maths-Conic Section-18786.png
  • 2)
    Maths-Conic Section-18787.png

  • Maths-Conic Section-18788.png

  • Maths-Conic Section-18789.png

Maths-Conic Section-18791.png
  • No locus if k > 0
  • An ellipse, if k > 0
  • A point if, k = 0
  • A hyperbola, if k > 0
The number of points of intersection of the two curves y = 2sinx and y = 5x2 + 2x + 3 is
  • 0
  • 1
  • 2


Maths-Conic Section-18794.png

  • Maths-Conic Section-18795.png
  • 2)
    Maths-Conic Section-18796.png

  • Maths-Conic Section-18797.png

  • Maths-Conic Section-18798.png
The locus of the midpoint of the line segment joining the focus to a moving point on the parabola on the parabola y2 = 4ax is another parabola with the directrix
  • x = –a
  • x = –a/2
  • x = 0
  • x = a/2

Maths-Conic Section-18801.png
  • (1, 1)
  • (1, 0)
  • (1, –1)
  • (0, 0)

Maths-Conic Section-18803.png

  • Maths-Conic Section-18804.png
  • 2)
    Maths-Conic Section-18805.png

  • Maths-Conic Section-18806.png

  • Maths-Conic Section-18807.png

Maths-Conic Section-18809.png
  • 1/8
  • 8
  • 4
  • 1/4
The centre of the circle passing through the point (0,and touching the curve y = x2 at (2,is

  • Maths-Conic Section-18811.png
  • 2)
    Maths-Conic Section-18812.png

  • Maths-Conic Section-18813.png
  • None of these

Maths-Conic Section-18815.png

  • Maths-Conic Section-18816.png
  • 2)
    Maths-Conic Section-18817.png

  • Maths-Conic Section-18818.png

  • Maths-Conic Section-18819.png
Which one of the following curves cuts the parabola y2 = 4ax at right angles

  • Maths-Conic Section-18821.png
  • 2)
    Maths-Conic Section-18822.png

  • Maths-Conic Section-18823.png

  • Maths-Conic Section-18824.png

Maths-Conic Section-18826.png

  • Maths-Conic Section-18827.png
  • 2)
    Maths-Conic Section-18828.png

  • Maths-Conic Section-18829.png

  • Maths-Conic Section-18830.png

Maths-Conic Section-18832.png

  • Maths-Conic Section-18833.png
  • 2)
    Maths-Conic Section-18834.png

  • Maths-Conic Section-18835.png

  • Maths-Conic Section-18836.png

Maths-Conic Section-18838.png

  • Maths-Conic Section-18839.png
  • 2)
    Maths-Conic Section-18840.png

  • Maths-Conic Section-18841.png

  • Maths-Conic Section-18842.png

Maths-Conic Section-18844.png

  • Maths-Conic Section-18845.png
  • 2)
    Maths-Conic Section-18846.png

  • Maths-Conic Section-18847.png

  • Maths-Conic Section-18848.png
The locus of mid point of that chord of parabola which subtends right angle on the vertex will be

  • Maths-Conic Section-18850.png
  • 2)
    Maths-Conic Section-18851.png

  • Maths-Conic Section-18852.png

  • Maths-Conic Section-18853.png
The equation of a circle passing through the vertex and the extremities of the latus rectum of the parabola y2 = 8x is

  • Maths-Conic Section-18855.png
  • 2)
    Maths-Conic Section-18856.png

  • Maths-Conic Section-18857.png

  • Maths-Conic Section-18858.png

Maths-Conic Section-18860.png

  • Maths-Conic Section-18861.png
  • 2)
    Maths-Conic Section-18862.png

  • Maths-Conic Section-18863.png
  • 1

Maths-Conic Section-18865.png
  • ab
  • abe

  • Maths-Conic Section-18866.png

  • Maths-Conic Section-18867.png
A man running round a race-course notes that the sum of the distance of two flsh-posts from him is always 10 metres and the distance between the flag-posts is 8 metres. The area of the path he encloses in square metres is

  • Maths-Conic Section-18869.png
  • 2)
    Maths-Conic Section-18870.png

  • Maths-Conic Section-18871.png

  • Maths-Conic Section-18872.png
If the angle between the lines joining the end points of minor axis of an ellipse with its foci is π/2, then the eccentricity of the ellipse is

  • Maths-Conic Section-18874.png
  • 2)
    Maths-Conic Section-18875.png

  • Maths-Conic Section-18876.png

  • Maths-Conic Section-18877.png
The eccentricity of an ellipse, with its centre at the origin, is ½. If one of the directrices is x = 4, then the equation of the ellipse is

  • Maths-Conic Section-18879.png
  • 2)
    Maths-Conic Section-18880.png

  • Maths-Conic Section-18881.png

  • Maths-Conic Section-18882.png

Maths-Conic Section-18884.png

  • Maths-Conic Section-18885.png
  • 2)
    Maths-Conic Section-18886.png

  • Maths-Conic Section-18887.png
  • None of the above

Maths-Conic Section-18889.png

  • Maths-Conic Section-18890.png
  • 2)
    Maths-Conic Section-18891.png

  • Maths-Conic Section-18892.png

  • Maths-Conic Section-18893.png

Maths-Conic Section-18895.png

  • Maths-Conic Section-18896.png
  • 2)
    Maths-Conic Section-18897.png

  • Maths-Conic Section-18898.png

  • Maths-Conic Section-18899.png

Maths-Conic Section-18901.png

  • Maths-Conic Section-18902.png
  • 2)
    Maths-Conic Section-18903.png

  • Maths-Conic Section-18904.png

  • Maths-Conic Section-18905.png

Maths-Conic Section-18907.png

  • Maths-Conic Section-18908.png
  • 2)
    Maths-Conic Section-18909.png

  • Maths-Conic Section-18910.png

  • Maths-Conic Section-18911.png
The locus of the middle point of the intercepts of the tangents drawn from an external point to the ellipse x2 + 2y2 = 2 between the coordinates axes is

  • Maths-Conic Section-18913.png
  • 2)
    Maths-Conic Section-18914.png

  • Maths-Conic Section-18915.png

  • Maths-Conic Section-18916.png
If the normal at any point P on the ellipse cuts the major and minor axis in G and g respectively and C be the centre of the ellipse, then

  • Maths-Conic Section-18918.png
  • 2)
    Maths-Conic Section-18919.png

  • Maths-Conic Section-18920.png
  • None of the above
The locus of the poles of normal chords of an ellipse is given by

  • Maths-Conic Section-18922.png
  • 2)
    Maths-Conic Section-18923.png

  • Maths-Conic Section-18924.png

  • Maths-Conic Section-18925.png

Maths-Conic Section-18927.png

  • Maths-Conic Section-18928.png
  • 2)
    Maths-Conic Section-18929.png
  • 0
  • None of these

Maths-Conic Section-18931.png

  • Maths-Conic Section-18932.png
  • 2)
    Maths-Conic Section-18933.png

  • Maths-Conic Section-18934.png

  • Maths-Conic Section-18935.png

Maths-Conic Section-18937.png
  • A rectangular hyperbola
  • A hyperbola
  • An ellipse
  • A parabola

Maths-Conic Section-18939.png

  • Maths-Conic Section-18940.png
  • 2)
    Maths-Conic Section-18941.png

  • Maths-Conic Section-18942.png
  • None of these

Maths-Conic Section-18944.png

  • Maths-Conic Section-18945.png
  • 2)
    Maths-Conic Section-18946.png

  • Maths-Conic Section-18947.png

  • Maths-Conic Section-18948.png

Maths-Conic Section-18950.png

  • Maths-Conic Section-18951.png
  • 2)
    Maths-Conic Section-18952.png

  • Maths-Conic Section-18953.png

  • Maths-Conic Section-18954.png
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Maths Quiz Questions and Answers