JEE Questions for Maths Conic Section Quiz 8 - MCQExams.com


Maths-Conic Section-17543.png
  • (3, –2)
  • (2, –3)
  • (2, 2)
  • (3, 3)

Maths-Conic Section-17545.png
  • 1
  • 2
  • 0
  • None of these

Maths-Conic Section-17547.png
  • (0, 0)
  • 2)
    Maths-Conic Section-17548.png

  • Maths-Conic Section-17549.png

  • Maths-Conic Section-17550.png
The point of contact between the line y = x + 2 and the parabola y2 = 8x has the coordinates
  • (2, 3)
  • (2, 2)
  • (4, 2)
  • (2, 4)

Maths-Conic Section-17553.png

  • Maths-Conic Section-17554.png
  • 2)
    Maths-Conic Section-17555.png

  • Maths-Conic Section-17556.png

  • Maths-Conic Section-17557.png
Let a circle touches to the directrix of a parabola y2 = 2ax has its centre coinciding with the focus of the parabola. Then the point of intersection of the parabola and circle is

  • Maths-Conic Section-17559.png
  • 2)
    Maths-Conic Section-17560.png

  • Maths-Conic Section-17561.png

  • Maths-Conic Section-17562.png

Maths-Conic Section-17564.png

  • Maths-Conic Section-17565.png
  • 2)
    Maths-Conic Section-17566.png

  • Maths-Conic Section-17567.png

  • Maths-Conic Section-17568.png
Which of the following points lie on the parabola x2 = 4ay

  • Maths-Conic Section-17570.png
  • 2)
    Maths-Conic Section-17571.png

  • Maths-Conic Section-17572.png

  • Maths-Conic Section-17573.png
The equation of the parabola whose vertex is at (2, –and focus at (2, –is

  • Maths-Conic Section-17574.png
  • 2)
    Maths-Conic Section-17575.png

  • Maths-Conic Section-17576.png

  • Maths-Conic Section-17577.png
The length of the common chord of the parabolas y2 = x and x2 = y is

  • Maths-Conic Section-17579.png
  • 1

  • Maths-Conic Section-17580.png

  • Maths-Conic Section-17581.png
The equation of the parabola with focus (0,and directrix x + y = 4 is

  • Maths-Conic Section-17583.png
  • 2)
    Maths-Conic Section-17584.png

  • Maths-Conic Section-17585.png

  • Maths-Conic Section-17586.png

Maths-Conic Section-17588.png
  • 2
  • –2
  • 3
  • –3

Maths-Conic Section-17590.png
  • y = 3
  • y = –3
  • y = 2
  • y = 0

Maths-Conic Section-17592.png

  • Maths-Conic Section-17593.png
  • 2)
    Maths-Conic Section-17594.png

  • Maths-Conic Section-17595.png

  • Maths-Conic Section-17596.png

Maths-Conic Section-17598.png
  • A pair of straight lines
  • An ellipse
  • An ellipse
  • A hyperbola

Maths-Conic Section-17600.png

  • Maths-Conic Section-17601.png
  • 2)
    Maths-Conic Section-17602.png

  • Maths-Conic Section-17603.png

  • Maths-Conic Section-17604.png

Maths-Conic Section-17606.png

  • Maths-Conic Section-17607.png
  • 2)
    Maths-Conic Section-17608.png

  • Maths-Conic Section-17609.png
  • None of these

Maths-Conic Section-17611.png

  • Maths-Conic Section-17612.png
  • 2)
    Maths-Conic Section-17613.png

  • Maths-Conic Section-17614.png
  • None of these

Maths-Conic Section-17616.png

  • Maths-Conic Section-17617.png
  • 2)
    Maths-Conic Section-17618.png

  • Maths-Conic Section-17619.png

  • Maths-Conic Section-17620.png

Maths-Conic Section-17622.png

  • Maths-Conic Section-17623.png
  • 2)
    Maths-Conic Section-17624.png

  • Maths-Conic Section-17625.png

  • Maths-Conic Section-17626.png

Maths-Conic Section-17628.png

  • Maths-Conic Section-17629.png
  • 2)
    Maths-Conic Section-17630.png

  • Maths-Conic Section-17631.png

  • Maths-Conic Section-17632.png

Maths-Conic Section-17634.png

  • Maths-Conic Section-17635.png
  • 2)
    Maths-Conic Section-17636.png

  • Maths-Conic Section-17637.png
  • None of these

Maths-Conic Section-17639.png

  • Maths-Conic Section-17640.png
  • 2)
    Maths-Conic Section-17641.png

  • Maths-Conic Section-17642.png

  • Maths-Conic Section-17643.png
The point of the contact of the tangent to the parabola y2 = 4ax, which makes an angle of 60o with x-axis is

  • Maths-Conic Section-17645.png
  • 2)
    Maths-Conic Section-17646.png

  • Maths-Conic Section-17647.png
  • None of these

Maths-Conic Section-17649.png

  • Maths-Conic Section-17650.png
  • 2)
    Maths-Conic Section-17651.png

  • Maths-Conic Section-17652.png

  • Maths-Conic Section-17653.png

Maths-Conic Section-17655.png

  • Maths-Conic Section-17656.png
  • 2)
    Maths-Conic Section-17657.png

  • Maths-Conic Section-17658.png

  • Maths-Conic Section-17659.png

Maths-Conic Section-17661.png
  • (–6, –9)
  • (–13, –9)
  • (–6, –7)
  • (13, 7)

Maths-Conic Section-17663.png

  • Maths-Conic Section-17664.png
  • 2)
    Maths-Conic Section-17665.png

  • Maths-Conic Section-17666.png

  • Maths-Conic Section-17667.png
The angle of intersection between the curves y2 = 4x and x2 = 32y at point (16, 8), is

  • Maths-Conic Section-17669.png
  • 2)
    Maths-Conic Section-17670.png

  • Maths-Conic Section-17671.png

  • Maths-Conic Section-17672.png
The locus of a foot of perpendicular drawn to the tangent of parabola y2 = 4ax from focus is

  • Maths-Conic Section-17674.png
  • 2)
    Maths-Conic Section-17675.png

  • Maths-Conic Section-17676.png

  • Maths-Conic Section-17677.png

Maths-Conic Section-17679.png
  • (1, 1)
  • (1/2, 1/2)
  • (0, 1)
  • (0, 1)

Maths-Conic Section-17681.png
  • a
  • 2)
    Maths-Conic Section-17682.png
  • 2a

  • Maths-Conic Section-17683.png

Maths-Conic Section-17685.png

  • Maths-Conic Section-17686.png
  • 2)
    Maths-Conic Section-17687.png

  • Maths-Conic Section-17688.png
  • None of these
The angle between the tangents drawn at the end points of the latus rectum of parabola y2 = 4ax is

  • Maths-Conic Section-17690.png
  • 2)
    Maths-Conic Section-17691.png

  • Maths-Conic Section-17692.png

  • Maths-Conic Section-17693.png

Maths-Conic Section-17695.png

  • Maths-Conic Section-17696.png
  • 2)
    Maths-Conic Section-17697.png

  • Maths-Conic Section-17698.png

  • Maths-Conic Section-17699.png
The locus of the point of intersection of the perpendicular tangents to the parabola x2 = 4ay is
  • Axis of the parabola
  • Directrcix of the parabola
  • Focal chord of the parabola
  • Tangent at vertex to the parabola
The angle between the tangents drawn from the origin to the parabola y2 = 4a(x –a) is

  • Maths-Conic Section-17701.png
  • 2)
    Maths-Conic Section-17702.png

  • Maths-Conic Section-17703.png

  • Maths-Conic Section-17704.png

Maths-Conic Section-17706.png

  • Maths-Conic Section-17707.png
  • 2)
    Maths-Conic Section-17708.png

  • Maths-Conic Section-17709.png

  • Maths-Conic Section-17710.png

Maths-Conic Section-17712.png

  • Maths-Conic Section-17713.png
  • 2)
    Maths-Conic Section-17714.png

  • Maths-Conic Section-17715.png

  • Maths-Conic Section-17716.png

Maths-Conic Section-17718.png
  • They both touch each other at P
  • They cut at right angles at P
  • The tangents to each curve at P make complementary angles with the x-axis
  • None of the above

Maths-Conic Section-17720.png

  • Maths-Conic Section-17721.png
  • 2)
    Maths-Conic Section-17722.png

  • Maths-Conic Section-17723.png

  • Maths-Conic Section-17724.png

Maths-Conic Section-17726.png
  • (3, –4), (13, 4)
  • (–3, –4), (13, –4)
  • (3, 4), (–13, 4)
  • (5, –8), (–5, 8)
If the parabola y2 passes through the point (1, –2), then the tangent at this point is
  • x + y – 1 = 0
  • x – y – 1 = 0
  • x + y + 1 = 0
  • x – y + 1 = 0
The equation of the tangent to the parabola y2 = 16x, which is perpendicular to the line y = 3x + 7 is
  • y – 3x + 4 = 0
  • 3y – x + 36 = 0
  • 3y + x – 36 = 0
  • 3y + x + 36 = 0

Maths-Conic Section-17730.png

  • Maths-Conic Section-17731.png
  • 2)
    Maths-Conic Section-17732.png

  • Maths-Conic Section-17733.png

  • Maths-Conic Section-17734.png

Maths-Conic Section-17736.png
  • y = x + 1
  • y = x + 2
  • y = x – 2
  • y = –x + 2

Maths-Conic Section-17738.png
  • A straight line
  • A circle
  • A parabola
  • Two straight lines
The line x – y + 2 = 0 touches the parabola y2 = 8x at the point
  • (2, –4)
  • 2)
    Maths-Conic Section-17740.png

  • Maths-Conic Section-17741.png
  • (2, 4)
The tangent to the parabola y2 = 4ax at the point (a, 2a) makes with x-axis an angle equal to

  • Maths-Conic Section-17743.png
  • 2)
    Maths-Conic Section-17744.png

  • Maths-Conic Section-17745.png

  • Maths-Conic Section-17746.png
The coordinates of a moving point P are (2t2 + 4, 4t + 6). Then its locus will be
  • Circle
  • Straight line
  • Parabola
  • Ellipse
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Maths Quiz Questions and Answers