JEE Questions for Maths Differentiation Quiz 2 - MCQExams.com

The derivative of asec x with respect to a tan x (a >is
  • sec x asec x – tan x
  • sin x a tan x – sec x
  • sin x asec x – tan x
  • a sec x – tan x
A value of x in the interval (1,such that f '(x) = 0 where f(x) = x3 – 3x2 + 2x + 10 is

  • Maths-Differentiation-24757.png
  • 2)
    Maths-Differentiation-24758.png

  • Maths-Differentiation-24759.png

  • Maths-Differentiation-24760.png

Maths-Differentiation-24762.png
  • –1
  • 1
  • 2
  • 4
The derivative of log |x| is

  • Maths-Differentiation-24764.png
  • 2)
    Maths-Differentiation-24765.png

  • Maths-Differentiation-24766.png
  • None of these

Maths-Differentiation-24768.png

  • Maths-Differentiation-24769.png
  • 2)
    Maths-Differentiation-24770.png

  • Maths-Differentiation-24771.png
  • None of the above
If y = 2log x, then dy/dx is equal to

  • Maths-Differentiation-24773.png
  • 2)
    Maths-Differentiation-24774.png

  • Maths-Differentiation-24775.png

  • Maths-Differentiation-24776.png

Maths-Differentiation-24778.png
  • a x
  • a2 x2
  • x/a
  • x/2a
  • 2a

Maths-Differentiation-24780.png

  • Maths-Differentiation-24781.png
  • 2)
    Maths-Differentiation-24782.png

  • Maths-Differentiation-24783.png

  • Maths-Differentiation-24784.png

Maths-Differentiation-24786.png

  • Maths-Differentiation-24787.png
  • 2)
    Maths-Differentiation-24788.png

  • Maths-Differentiation-24789.png

  • Maths-Differentiation-24790.png
The differential coefficient of f(log x), where f(x) = log x, is

  • Maths-Differentiation-24792.png
  • (x log x)–1

  • Maths-Differentiation-24793.png
  • None of these
Derivative of log10 x with respect to x2 is
  • 2x2 loge 10
  • 2)
    Maths-Differentiation-24795.png

  • Maths-Differentiation-24796.png
  • x2 loge 10

Maths-Differentiation-24798.png
  • 1
  • –1
  • 0
  • 2
If y is a function of x and log(x + y) = 2xy, then the value of y'(is
  • 1
  • –1
  • 2
  • 0

Maths-Differentiation-24801.png

  • Maths-Differentiation-24802.png
  • 2)
    Maths-Differentiation-24803.png

  • Maths-Differentiation-24804.png

  • Maths-Differentiation-24805.png

Maths-Differentiation-24807.png

  • Maths-Differentiation-24808.png
  • 2)
    Maths-Differentiation-24809.png

  • Maths-Differentiation-24810.png

  • Maths-Differentiation-24811.png

Maths-Differentiation-24813.png

  • Maths-Differentiation-24814.png
  • 2)
    Maths-Differentiation-24815.png

  • Maths-Differentiation-24816.png
  • None of these

Maths-Differentiation-24818.png

  • Maths-Differentiation-24819.png
  • 2)
    Maths-Differentiation-24820.png

  • Maths-Differentiation-24821.png

  • Maths-Differentiation-24822.png

Maths-Differentiation-24824.png
  • 22
  • 11
  • 0
  • 20
  • None of these

Maths-Differentiation-24826.png
  • 16/3
  • 32/3
  • 16√2/3
  • 32√2/3
  • 32(2)1/2/3

Maths-Differentiation-24828.png
  • n!
  • (n – 1)!
  • (–(n – 1)!
  • (–1)n n!
  • (n + 1)!

Maths-Differentiation-24830.png

  • Maths-Differentiation-24831.png
  • 2)
    Maths-Differentiation-24832.png

  • Maths-Differentiation-24833.png

  • Maths-Differentiation-24834.png

Maths-Differentiation-24836.png

  • Maths-Differentiation-24837.png
  • 2)
    Maths-Differentiation-24838.png

  • Maths-Differentiation-24839.png

  • Maths-Differentiation-24840.png

Maths-Differentiation-24842.png
  • x
  • 2)
    Maths-Differentiation-24843.png
  • 0

  • Maths-Differentiation-24844.png

Maths-Differentiation-24846.png

  • Maths-Differentiation-24847.png
  • 2)
    Maths-Differentiation-24848.png

  • Maths-Differentiation-24849.png

  • Maths-Differentiation-24850.png

Maths-Differentiation-24852.png
  • sin x
  • – cos x
  • cos x
  • – sinx

Maths-Differentiation-24854.png

  • Maths-Differentiation-24855.png
  • 2)
    Maths-Differentiation-24856.png

  • Maths-Differentiation-24857.png

  • Maths-Differentiation-24858.png
If y = logn x, where logn means log log log...(repeated n times), then x log x log2 x log3 x ...logn–1 x logn x dy/dx is equal to
  • log x
  • x
  • 1/logx
  • logn x

Maths-Differentiation-24861.png
  • 1
  • 0

  • Maths-Differentiation-24862.png

  • Maths-Differentiation-24863.png

  • Maths-Differentiation-24864.png
If f(x) be a polynomial function of the second degree. If f(= f(–and a1, a2, a3 are in AP, then f ' (a1), f ' (a2), f ' (a3) are in
  • AP
  • GP
  • HP
  • None of these
If f(x) = cos x cos 2x cos 4x cos 8x cos 16x, then f '(π/is equal to
  • √2
  • 1/√2
  • 0
  • √3/2

Maths-Differentiation-24868.png
  • 0
  • 1/2
  • 1
  • 2

Maths-Differentiation-24870.png

  • Maths-Differentiation-24871.png
  • 2)
    Maths-Differentiation-24872.png

  • Maths-Differentiation-24873.png

  • Maths-Differentiation-24874.png

Maths-Differentiation-24876.png

  • Maths-Differentiation-24877.png
  • 2)
    Maths-Differentiation-24878.png

  • Maths-Differentiation-24879.png

  • Maths-Differentiation-24880.png
If xm yn = (x + y)m+n, then (dy/dx)x = 1, y =2 is equal to
  • 1/2
  • 2
  • 2m/n
  • m/2n
If x = a (θ – sin θ) and y = a(1 – cos θ), then dy/dx is equal to
  • cot θ/2
  • tan θ/2
  • 1/2 cosec2 θ/2
  • – (1/cosec2 θ/2

Maths-Differentiation-24884.png
  • sec2 x
  • 2)
    Maths-Differentiation-24885.png

  • Maths-Differentiation-24886.png

  • Maths-Differentiation-24887.png

Maths-Differentiation-24889.png

  • Maths-Differentiation-24890.png
  • 2)
    Maths-Differentiation-24891.png

  • Maths-Differentiation-24892.png

  • Maths-Differentiation-24893.png

Maths-Differentiation-24895.png

  • Maths-Differentiation-24896.png
  • 2)
    Maths-Differentiation-24897.png

  • Maths-Differentiation-24898.png

  • Maths-Differentiation-24899.png

  • Maths-Differentiation-24900.png
Suppose that f(x) is a differentiable function such that f '(x) is continuous f '(= 1 and f '' (does not exist. If g(x) = x f ' (x). Then,
  • g'(does not exist
  • g'(= 0
  • g'(= 1
  • g'(= 2

Maths-Differentiation-24903.png

  • Maths-Differentiation-24904.png
  • 2)
    Maths-Differentiation-24905.png

  • Maths-Differentiation-24906.png

  • Maths-Differentiation-24907.png
If f be twice differentiable function satisfying f(= 1, f(= 4, f(= 9, then
  • f '' (x) = 2, ∀ x ϵ R
  • f ' (x) = 5 = f ''(x), for someone x ϵ (1,3)
  • there exists atleast one x ϵ (1,such that f '' (x) = 2
  • None of the above
If y = cos(3 cos–1 x), then d3y/dx3 is equal to
  • 24
  • 27
  • 3 – 12 x2
  • –24

Maths-Differentiation-24911.png
  • 1/2
  • 2/3
  • 1/3
  • 2/5
  • 1/5
If x = a(1 + cos θ), y = a(θ + sin θ) , then d2y/ dx2 at θ = π/2 is equal to
  • – (1/a)
  • 1/a
  • –1
  • –2
  • – (2/a)

Maths-Differentiation-24914.png
  • 2/3
  • 3/2
  • 1/2
  • 1
  • 0
The second order derivative of a sin3 t with respect to a cos3 t and t = π/4 is
  • 2
  • 1/12a
  • 4√2/3a
  • 3a/4√2
If 8 f(x) + 6f(1/x) = x + 5 and y = x2 f(x), then dy/dx at x = – 1 is equal to
  • 0
  • 1/14
  • – (1/14)
  • 1
If f be a twice differentiable function such that f ' (x) = – f (x) and f ' (x) = g(x) .
If h ' (x) [f(x)2 + g(x)2], h(= 8 and h(= 2, then h(is equal to
  • 1
  • 2
  • 3
  • None of these

Maths-Differentiation-24918.png

  • Maths-Differentiation-24919.png
  • 2)
    Maths-Differentiation-24920.png

  • Maths-Differentiation-24921.png

  • Maths-Differentiation-24922.png

Maths-Differentiation-24924.png
  • 0
  • 2 ab
  • ab (a + b)
  • ab
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Maths Quiz Questions and Answers