JEE Questions for Maths Differentiation Quiz 3 - MCQExams.com

If f (x) = sin x, g (x) = x2 and h (x) = logex. If F (x) = (hogof) (x), then F '' (x) is equal to
  • a cosec3 x
  • 2 cot x2 – 4x2 cosec2 x2
  • 2 cot x2
  • – 2 cosec2 x
  • 4 cosec2 x
If x = et sin t, y = et cos t, then d2y/dx2 at x = π is equal to
  • 2 eπ
  • (1/eπ
  • 1/2eπ
  • 2/eπ

Maths-Differentiation-24928.png
  • 0
  • 1
  • – b2 y
  • – by

Maths-Differentiation-24930.png

  • Maths-Differentiation-24931.png
  • 2)
    Maths-Differentiation-24932.png

  • Maths-Differentiation-24933.png

  • Maths-Differentiation-24934.png
If y2 = ax2 + bx + c, where a, b and c are constant, then y3. d2y/dx2 is
  • a constant
  • a function of x
  • a function of y
  • a function of x and y both

Maths-Differentiation-24937.png

  • Maths-Differentiation-24938.png
  • 2)
    Maths-Differentiation-24939.png

  • Maths-Differentiation-24940.png

  • Maths-Differentiation-24941.png

Maths-Differentiation-24943.png

  • Maths-Differentiation-24944.png
  • 9y
  • –9y

  • Maths-Differentiation-24945.png

Maths-Differentiation-24947.png

  • Maths-Differentiation-24948.png
  • 2)
    Maths-Differentiation-24949.png

  • Maths-Differentiation-24950.png

  • Maths-Differentiation-24951.png

Maths-Differentiation-24953.png

  • Maths-Differentiation-24954.png
  • 2)
    Maths-Differentiation-24955.png

  • Maths-Differentiation-24956.png

  • Maths-Differentiation-24957.png
If x = sin t, y = cos pt, then
  • (1 – xy2 + xy1 + p2y = 0
  • (1 – x2)y2 + xy1 - p2y = 0
  • (1 + x2)y2 - xy1 + p2y = 0
  • (1 – x2)y2 - xy1 + p2y = 0
If y = t10 + 1 and x = t8 + t, then d2y/dx2 is equal to
  • 5/2 t
  • 20 t8
  • 5/16 t6
  • None of these
If sin (x + y) + cos (x + y) = log (x + y), then d2y/dx2 is equal to
  • –y/x
  • 0
  • –1
  • 1

Maths-Differentiation-24962.png

  • Maths-Differentiation-24963.png
  • 2)
    Maths-Differentiation-24964.png

  • Maths-Differentiation-24965.png
  • None of these

Maths-Differentiation-24967.png
  • n2y
  • – n2y
  • – y
  • 2x2y

Maths-Differentiation-24969.png

  • Maths-Differentiation-24970.png
  • 2)
    Maths-Differentiation-24971.png

  • Maths-Differentiation-24972.png

  • Maths-Differentiation-24973.png
nth derivative of (x + 1)n is equal to
  • (n – 1)!
  • (n + 1)!
  • n!
  • n[(n + 1)]n–1

Maths-Differentiation-24976.png

  • Maths-Differentiation-24977.png
  • 2)
    Maths-Differentiation-24978.png

  • Maths-Differentiation-24979.png
  • None of these

Maths-Differentiation-24981.png

  • Maths-Differentiation-24982.png
  • 2)
    Maths-Differentiation-24983.png

  • Maths-Differentiation-24984.png

  • Maths-Differentiation-24985.png

  • Maths-Differentiation-24986.png
If f (x) = 10 cos x + (13 + 2x) sin x, then f '' (x) + f (x) is equal to
  • cos x
  • 4 cos x
  • sin x
  • 4 sinx

Maths-Differentiation-24989.png
  • – x
  • x
  • y
  • – y

Maths-Differentiation-24991.png
  • – sin 2u
  • sin 2u
  • cos 2u
  • – cos 2u

Maths-Differentiation-24993.png
  • cot z
  • 2 cot z
  • 2 tan z
  • 2 sec z

Maths-Differentiation-24995.png
  • sin u
  • cosecu
  • 2 tan u
  • 3 tan u

Maths-Differentiation-24997.png

  • Maths-Differentiation-24998.png
  • 2)
    Maths-Differentiation-24999.png

  • Maths-Differentiation-25000.png
  • None of these

Maths-Differentiation-25002.png
  • –1
  • 0
  • 1
  • 2

Maths-Differentiation-25004.png
  • 0
  • 1
  • 2
  • None of the above
If g is the inverse of a function f and
Maths-Differentiation-25006.png
  • 1 + x5
  • 5x4

  • Maths-Differentiation-25007.png
  • 1 + {g(x)}5
If x sin (a + y) + sin a cos (a + y) = 0, then dy/dx is equal to

  • Maths-Differentiation-25009.png
  • 2)
    Maths-Differentiation-25010.png

  • Maths-Differentiation-25011.png

  • Maths-Differentiation-25012.png

Maths-Differentiation-25014.png
  • P' ' ' (x) + P' (x)
  • P' ' (x) P' ' ' (x)
  • P(x) P' ' ' (x)
  • a constant
If f(x) = x2 + bx + 7. If f '(= 2f '(7/2), then the value of b is
  • 4
  • 3
  • –4
  • –3
  • 2
If f(x) = x/(1 + x) and g(x) = f[f(x)], then g'(x) is equal to

  • Maths-Differentiation-25017.png
  • 2)
    Maths-Differentiation-25018.png

  • Maths-Differentiation-25019.png

  • Maths-Differentiation-25020.png
If sin(x + y) = log(x + y), then dy/dx is equal to
  • 2
  • –2
  • 1
  • –1

Maths-Differentiation-25023.png
  • 2
  • –1
  • a/b
  • 0
  • None of these

Maths-Differentiation-25025.png

  • Maths-Differentiation-25026.png
  • 2)
    Maths-Differentiation-25027.png

  • Maths-Differentiation-25028.png
  • None of these

Maths-Differentiation-25030.png
  • ∆1 = 3(∆2)2
  • (d/dx)(∆= 3∆2
  • (d/dx)(∆= 3(∆2)2
  • ∆1 = 3(∆2)3/2
If x is measured in degrees, then d/dx (cos x) is equal to
  • – sin x
  • – (180/π) sin x
  • – (π/sin x
  • sin x

Maths-Differentiation-25033.png

  • Maths-Differentiation-25034.png
  • 2)
    Maths-Differentiation-25035.png

  • Maths-Differentiation-25036.png

  • Maths-Differentiation-25037.png

Maths-Differentiation-25038.png
  • √3
  • 1/√3
  • 0
  • –√3
If x ≠ 0 and y = loge |2x|, then dy/dx is equal to
  • 1/x
  • – 1/x
  • ± 1/2x
  • None of these
If f : (–1,→ R be a differentiable function with f(= – 1 and f '(= 1. Let g(x) = [f{2f(x) + 2}]2. Then, g'(is equal to
  • 4
  • –4
  • 0
  • –2

Maths-Differentiation-25042.png

  • Maths-Differentiation-25043.png
  • 2)
    Maths-Differentiation-25044.png

  • Maths-Differentiation-25045.png

  • Maths-Differentiation-25046.png
If f(x) = 22x – 1 and ∅(x) = – 2x + 2x log 2 . If f '(x) > ∅' (x), then
  • 0 < x < 1
  • 0 ≤ x < 1
  • x > 0
  • x ≥ 0

Maths-Differentiation-25204.png

  • Maths-Differentiation-25205.png
  • 2)
    Maths-Differentiation-25206.png

  • Maths-Differentiation-25207.png
  • None of these
If x2 + y2 = t + 1/t and x4 + y4 = t2 + 1/t2, then dy/dx is equal to
  • y/x
  • – (y/x)
  • x/y
  • – (x/y)
If y = log xx, then the value of dy/dx is
  • xx (1 + log x)
  • log (ex)
  • log (e/x)
  • log (x/e)

Maths-Differentiation-25052.png

  • Maths-Differentiation-25053.png
  • 2)
    Maths-Differentiation-25054.png

  • Maths-Differentiation-25055.png
  • x
If y = sin[cos–1 {sin (cos–1 x)}], then dy/dx at x = 1/2 equal to
  • 0
  • –1
  • 2/√3
  • 1/√3
  • 1
If x2 + y2 = t – 1/t and x4 + y4 = t2 + 1/t2, then dy/dx is equal to

  • Maths-Differentiation-25058.png
  • 2)
    Maths-Differentiation-25059.png

  • Maths-Differentiation-25060.png

  • Maths-Differentiation-25061.png

  • Maths-Differentiation-25062.png
If f(x) = (x – 7)2 (x – 2)7, x ϵ [2, 7]. Then, the value of θ ϵ (2,such that f '(θ) = 0 is
  • 49/4
  • 53/9
  • 53/7
  • 49/9
  • 45/7
If 2 f(x) = f '(x) and f(= 3, then f(is equal to
  • 3 e4
  • 3 e2
  • e4
  • None of these
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Maths Quiz Questions and Answers