JEE Questions for Maths Matrices And Determinants Quiz 4 - MCQExams.com


Maths-Matrices and Determinants-38502.png
  • - 2
  • - 1
  • 1
  • 2

Maths-Matrices and Determinants-38504.png

  • Maths-Matrices and Determinants-38505.png
  • 2)
    Maths-Matrices and Determinants-38506.png

  • Maths-Matrices and Determinants-38507.png
  • None of these

Maths-Matrices and Determinants-38509.png
  • 49χ
  • - 49χ
  • 0
  • 1

Maths-Matrices and Determinants-38511.png
  • 2(χ + y + z)2
  • 2(χ + y + z)3
  • (χ + y + z)3
  • 0

Maths-Matrices and Determinants-38513.png
  • 1
  • - 2
  • - 1
  • 0

Maths-Matrices and Determinants-38515.png
  • 1 , 3 , 6
  • 1 , 2 , 4
  • 4 , 5 , 6
  • 2 , 4 , 6
If A is a square matrix of order 4 and I is a unit matrix, then it is true that
  • det (2A) = 2 det (A)
  • det (2A) = 16 det (A)
  • det (-A) = - det (A)
  • det (A+ I) = det (A) + I

Maths-Matrices and Determinants-38518.png
  • χ
  • 0



Maths-Matrices and Determinants-38520.png
  • neither divisible by χ and y
  • divisible by both χ and y
  • divisible by χ but not y
  • neither divisible by y but not χ

Maths-Matrices and Determinants-38522.png
  • sin 4θ/ sin θ
  • 2sin2 2θ/sin θ
  • 4 cos2θ(2cos θ - 1)
  • None of these

Maths-Matrices and Determinants-38524.png
  • 2
  • 3
  • 0
  • 1

Maths-Matrices and Determinants-38525.png
  • χ(χ - p)(χ - q)
  • (χ - p) (χ - q) (χ + p + q)
  • (p - q) (χ - q) (χ - p)
  • pq(χ - p) (χ - q)

Maths-Matrices and Determinants-38527.png
  • α/β is one of the cube roots of unity
  • α is one of the cube roots of unity
  • β is one of the cube roots of unity
  • None of the above

Maths-Matrices and Determinants-38529.png
  • 9
  • - 9
  • 0
  • - 1
  • 1

Maths-Matrices and Determinants-38531.png
  • 6ab
  • ab
  • 12ab
  • 2ab

Maths-Matrices and Determinants-38533.png
  • - 8
  • 8
  • 10
  • None of these

Maths-Matrices and Determinants-38535.png
  • 0
  • 1

  • Maths-Matrices and Determinants-38536.png
  • None of these

Maths-Matrices and Determinants-38538.png
  • positive
  • negative
  • zero
  • None of these

Maths-Matrices and Determinants-38540.png

  • Maths-Matrices and Determinants-38541.png
  • 2)
    Maths-Matrices and Determinants-38542.png

  • Maths-Matrices and Determinants-38543.png

  • Maths-Matrices and Determinants-38544.png

Maths-Matrices and Determinants-38546.png
  • 1
  • 2
  • 3
  • 4

Maths-Matrices and Determinants-38548.png
  • 3 , - 1
  • - 3 , 1
  • 3 , 1
  • - 3 , - 1

Maths-Matrices and Determinants-38550.png
  • 6
  • 5
  • 4
  • 1
  • 2

Maths-Matrices and Determinants-38552.png
  • 5(√6 - 5)
  • √3(√6 - 5)
  • √5(√6 - √3)
  • √2(√7 - √5)
  • 3(√5 - √2)

Maths-Matrices and Determinants-38554.png
  • 1
  • sin a cos a
  • 0
  • sinχ cosχ
  • cosec 2χ

Maths-Matrices and Determinants-38556.png
  • 441 × 446 × 451023
  • 0
  • - 1
  • 1

Maths-Matrices and Determinants-38558.png
  • χ = 3, y = 1
  • χ = 1, y = 3
  • χ = 0, y = 3
  • χ = 0, y = 0

Maths-Matrices and Determinants-38560.png
  • 3
  • 2
  • 1
  • 0

Maths-Matrices and Determinants-38562.png
  • - 1
  • 1
  • 0
  • ω

Maths-Matrices and Determinants-38564.png
  • 1! 2! 3!`
  • 1! 3! 5!
  • 6!
  • 9!
If a square matrix A such that AAT = I = AT A, then |A| is equal to
  • 0
  • ± 1
  • ± 2
  • None of these

Maths-Matrices and Determinants-38567.png
  • 2
  • - 2
  • - 1
  • 1

Maths-Matrices and Determinants-38569.png
  • 2
  • 4
  • 0
  • 1

Maths-Matrices and Determinants-38571.png
  • (30)n
  • (10)n
  • 0
  • 2n + 3n + 5n

Maths-Matrices and Determinants-38573.png
  • 80
  • 100
  • - 110
  • 92

Maths-Matrices and Determinants-38575.png

  • Maths-Matrices and Determinants-38576.png
  • 2)
    Maths-Matrices and Determinants-38577.png

  • Maths-Matrices and Determinants-38578.png

  • Maths-Matrices and Determinants-38579.png

  • Maths-Matrices and Determinants-38580.png

Maths-Matrices and Determinants-38582.png

  • Maths-Matrices and Determinants-38583.png
  • 2)
    Maths-Matrices and Determinants-38584.png

  • Maths-Matrices and Determinants-38585.png

  • Maths-Matrices and Determinants-38586.png

  • Maths-Matrices and Determinants-38587.png
If the determinant of a 3 × 3 matrix A be 6, then B is a matrix defined by B = 5A2. The determinant of B is
  • 180
  • 100
  • 80
  • None of these

Maths-Matrices and Determinants-38590.png
  • 0
  • 1
  • i
  • ω

Maths-Matrices and Determinants-38592.png
  • 4/9
  • 9/4
  • 3√3
  • 1

Maths-Matrices and Determinants-38594.png
  • χ
  • χ3
  • 14 + χ2
  • χ5

Maths-Matrices and Determinants-38596.png

  • Maths-Matrices and Determinants-38597.png
  • 2)
    Maths-Matrices and Determinants-38598.png

  • Maths-Matrices and Determinants-38599.png
  • None of these
For 3 × 3 matrices M and N, which of the following statement (s) is (are) not correct ?
  • NT MN is symmetric or skew - symmetric, according as M is symmetric or skew-symmetric
  • MN - NM is symmetric for all symmetric matrices M and N
  • MN is symmetric for all symmetric matrices M and N
  • (adj M) (adj N) = adj (MN) for all invertible matrices M and N

Maths-Matrices and Determinants-38602.png
  • 4
  • 11
  • 5
  • 0

Maths-Matrices and Determinants-38604.png
  • - 2
  • - 1
  • 1
  • 3

Maths-Matrices and Determinants-38606.png

  • Maths-Matrices and Determinants-38607.png
  • 2)
    Maths-Matrices and Determinants-38608.png

  • Maths-Matrices and Determinants-38609.png
  • does not exist
If A is 2 × 2 matrix. Then,
Statement I adj(adj A) = A
Statement II |adj A| = A
  • Statement I is correct, Statement II is correct; Statement II is correct explanation for statement I.
  • Statement I is correct, Statement II is correct; Statement II is not a correct explanation for Statement I
  • Statement I is correct, Statement II is incorrect
  • Statement I is incorrect, Statement II is correct

Maths-Matrices and Determinants-38612.png
  • λ ≠ -17
  • λ ≠ -18
  • λ ≠ -19
  • λ ≠ -20
If A and B are square matrices of the same order such that (A + B) (A - B) = A2 - B2, then (ABA-1)2 is equal to
  • B2
  • I
  • A2 B2
  • A2

Maths-Matrices and Determinants-38615.png
  • 0
  • 9
  • 1/9
  • 81
If B is a non-singular matrix and A is a square matrix such that B-1 AB exists, then |B-1 AB| is equal to
  • |A-1 |
  • |B-1 |
  • |B|
  • |A|
  • |AB-1 |
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Maths Quiz Questions and Answers