JEE Questions for Maths Miscellaneous Quiz 9 - MCQExams.com


Maths-Miscellaneous-42479.png
  • 2006
  • 2005
  • 2005!
  • 1

Maths-Miscellaneous-42481.png

  • Maths-Miscellaneous-42482.png
  • 2)
    Maths-Miscellaneous-42483.png

  • Maths-Miscellaneous-42484.png

  • Maths-Miscellaneous-42485.png

Maths-Miscellaneous-42487.png

  • Maths-Miscellaneous-42488.png
  • 2)
    Maths-Miscellaneous-42489.png

  • Maths-Miscellaneous-42490.png

  • Maths-Miscellaneous-42491.png

Maths-Miscellaneous-42493.png

  • Maths-Miscellaneous-42494.png
  • 2)
    Maths-Miscellaneous-42495.png

  • Maths-Miscellaneous-42496.png

  • Maths-Miscellaneous-42497.png

Maths-Miscellaneous-42499.png

  • Maths-Miscellaneous-42500.png
  • 2)
    Maths-Miscellaneous-42501.png

  • Maths-Miscellaneous-42502.png

  • Maths-Miscellaneous-42503.png

Maths-Miscellaneous-42505.png

  • Maths-Miscellaneous-42506.png
  • 2)
    Maths-Miscellaneous-42507.png

  • Maths-Miscellaneous-42508.png
  • None of these

Maths-Miscellaneous-42510.png

  • Maths-Miscellaneous-42511.png
  • 2)
    Maths-Miscellaneous-42512.png

  • Maths-Miscellaneous-42513.png

  • Maths-Miscellaneous-42514.png

Maths-Miscellaneous-42516.png

  • Maths-Miscellaneous-42517.png
  • 2)
    Maths-Miscellaneous-42518.png

  • Maths-Miscellaneous-42519.png
  • None of these

Maths-Miscellaneous-42521.png

  • Maths-Miscellaneous-42522.png
  • 2)
    Maths-Miscellaneous-42523.png

  • Maths-Miscellaneous-42524.png

  • Maths-Miscellaneous-42525.png

Maths-Miscellaneous-42527.png
  • 9
  • 3
  • 0
  • 1

Maths-Miscellaneous-42529.png

  • Maths-Miscellaneous-42530.png
  • 2)
    Maths-Miscellaneous-42531.png

  • Maths-Miscellaneous-42532.png
  • None of these

Maths-Miscellaneous-42534.png

  • Maths-Miscellaneous-42535.png
  • 2)
    Maths-Miscellaneous-42536.png

  • Maths-Miscellaneous-42537.png

  • Maths-Miscellaneous-42538.png

Maths-Miscellaneous-42540.png
  • 0
  • 1
  • -1
  • 1/2

Maths-Miscellaneous-42542.png

  • Maths-Miscellaneous-42543.png
  • 2)
    Maths-Miscellaneous-42544.png

  • Maths-Miscellaneous-42545.png

  • Maths-Miscellaneous-42546.png

Maths-Miscellaneous-42548.png

  • Maths-Miscellaneous-42549.png
  • 2)
    Maths-Miscellaneous-42550.png

  • Maths-Miscellaneous-42551.png

  • Maths-Miscellaneous-42552.png

Maths-Miscellaneous-42554.png

  • Maths-Miscellaneous-42555.png
  • 2)
    Maths-Miscellaneous-42556.png

  • Maths-Miscellaneous-42557.png

  • Maths-Miscellaneous-42558.png

Maths-Miscellaneous-42560.png

  • Maths-Miscellaneous-42561.png
  • 2)
    Maths-Miscellaneous-42562.png

  • Maths-Miscellaneous-42563.png

  • Maths-Miscellaneous-42564.png

Maths-Miscellaneous-42566.png

  • Maths-Miscellaneous-42567.png
  • 2)
    Maths-Miscellaneous-42568.png

  • Maths-Miscellaneous-42569.png

  • Maths-Miscellaneous-42570.png

Maths-Miscellaneous-42572.png

  • Maths-Miscellaneous-42573.png
  • 2)
    Maths-Miscellaneous-42574.png

  • Maths-Miscellaneous-42575.png
  • None of these
    Maths-Miscellaneous-42576.png

Maths-Miscellaneous-42578.png

  • Maths-Miscellaneous-42579.png
  • 2)
    Maths-Miscellaneous-42580.png

  • Maths-Miscellaneous-42581.png

  • Maths-Miscellaneous-42582.png

Maths-Miscellaneous-42584.png

  • Maths-Miscellaneous-42585.png
  • 2)
    Maths-Miscellaneous-42586.png

  • Maths-Miscellaneous-42587.png

  • Maths-Miscellaneous-42588.png

Maths-Miscellaneous-42590.png
  • 1
  • 0
  • -1
  • -2

Maths-Miscellaneous-42592.png

  • Maths-Miscellaneous-42593.png
  • 2)
    Maths-Miscellaneous-42594.png

  • Maths-Miscellaneous-42595.png
  • None of these

Maths-Miscellaneous-42597.png

  • Maths-Miscellaneous-42598.png
  • 2)
    Maths-Miscellaneous-42599.png

  • Maths-Miscellaneous-42600.png

  • Maths-Miscellaneous-42601.png

Maths-Miscellaneous-42603.png

  • Maths-Miscellaneous-42604.png
  • 2)
    Maths-Miscellaneous-42605.png

  • Maths-Miscellaneous-42606.png

  • Maths-Miscellaneous-42607.png

Maths-Miscellaneous-42609.png

  • Maths-Miscellaneous-42610.png
  • 2)
    Maths-Miscellaneous-42611.png

  • Maths-Miscellaneous-42612.png
  • None of these

Maths-Miscellaneous-42614.png

  • Maths-Miscellaneous-42615.png
  • 2)
    Maths-Miscellaneous-42616.png

  • Maths-Miscellaneous-42617.png

  • Maths-Miscellaneous-42618.png

Maths-Miscellaneous-42620.png

  • Maths-Miscellaneous-42621.png
  • 2)
    Maths-Miscellaneous-42622.png

  • Maths-Miscellaneous-42623.png

  • Maths-Miscellaneous-42624.png

Maths-Miscellaneous-42626.png
  • There are two feasible regions
  • There are infinite feasible regions
  • There is no feasible region
  • None of the above
For the following shaded area, the linear constraints except x ≥ 0 and y ≥ 0, are
Maths-Miscellaneous-42627.png

  • Maths-Miscellaneous-42628.png
  • 2)
    Maths-Miscellaneous-42629.png

  • Maths-Miscellaneous-42630.png

  • Maths-Miscellaneous-42631.png
Let X1 and X2 are optimal solutions of a L.P.P., then

  • Maths-Miscellaneous-42633.png
  • 2)
    Maths-Miscellaneous-42634.png

  • Maths-Miscellaneous-42635.png

  • Maths-Miscellaneous-42636.png

Maths-Miscellaneous-42637.png
  • (3, 2.5)
  • (2, 3.5)
  • (2, 2.5)
  • (1, 2.5)
A company manufactures two types of telephone sets A and B. The A type telephone set requires 2 hour and B types telephone requires 4 hour to make. The company has 800 work hour per day. 300 telephone can pack in a day. The selling prices of A and B type telephones are Rs. 300 and 400 respectively. For maximum profits company produces x telephones of A type and y telephones of B types. Then except x ≥ 0 and y ≥ 0, linear constraints and the probable region of the L.P.P is of the type

  • Maths-Miscellaneous-42639.png
  • 2)
    Maths-Miscellaneous-42640.png

  • Maths-Miscellaneous-42641.png

  • Maths-Miscellaneous-42642.png

Maths-Miscellaneous-42644.png

  • Maths-Miscellaneous-42645.png
  • 2)
    Maths-Miscellaneous-42646.png

  • Maths-Miscellaneous-42647.png
  • None of these
The maximum value of objective function c = 2x + 3y in the given feasible region, is
Maths-Miscellaneous-42649.png
  • 29
  • 18
  • 14
  • 15

Maths-Miscellaneous-42651.png
  • x = 3
  • y = 3
  • z = 15
  • All the above

Maths-Miscellaneous-42653.png
  • 84
  • 95
  • 100
  • 96
A company manufactures two types of telephone sets A and B. The A type telephone set requires 2 hour and B types telephone requires 4 hour to make. The company has 800 work hour per day. 300 telephone can pack in a day. The selling prices of A and B type telephones are Rs. 300 and 400 respectively. For maximum profits company produces x telephones of A type and y telephones of B types. Then except x ≥  0 and y ≥ 0, linear constraints and the probable region of the L.P.P is of the type

  • Maths-Miscellaneous-42655.png
  • 2)
    Maths-Miscellaneous-42656.png

  • Maths-Miscellaneous-42657.png

  • Maths-Miscellaneous-42658.png
In any group, the number of improper subgroups is
  • 2
  • 3
  • Depends of the group
  • 1
In the group G = {2,4,6, 8} under multiplication modulo 10, the identity element is
  • 6
  • 8
  • 4
  • 2
We have to purchase two articles A and B of cost Rs. 45 and Rs. 25 respectively. I can purchase total article maximum of Rs. 1000. After selling the articles A and B, the profit per unit is Rs. 5 and 3 respectively. If I purchase the x and y numbers of articles A and B respectively, then the mathematical formulation of problem is

  • Maths-Miscellaneous-42662.png
  • 2)
    Maths-Miscellaneous-42663.png

  • Maths-Miscellaneous-42664.png
  • None of these

Maths-Miscellaneous-42666.png
  • (0,and (1, 1)
  • (0,and (3/2, 1)
  • (0,and (1, 6)
  • (0,and (1,

Maths-Miscellaneous-42668.png

  • Maths-Miscellaneous-42669.png
  • 2)
    Maths-Miscellaneous-42670.png

  • Maths-Miscellaneous-42671.png

  • Maths-Miscellaneous-42672.png
If every element of a group G is its own inverse, then G
  • Finite
  • Infinite
  • Cyclic
  • Abelian

Maths-Miscellaneous-42675.png

  • Maths-Miscellaneous-42676.png
  • 2)
    Maths-Miscellaneous-42677.png

  • Maths-Miscellaneous-42678.png
  • H contains the identity elements
Which one of the following is not true
  • Cancellation laws hold in a group
  • Identity element in a group is unique
  • Inverse of an element in a group is unique
  • Fourth roots of unity form an additive abelian group
The additive group of integers is a cyclic group generated by
  • 1
  • 2
  • 3
  • None of these

Maths-Miscellaneous-42680.png
  • An abelian group
  • Non-abelian group
  • Cyclic group
  • None of these

Maths-Miscellaneous-42682.png

  • Maths-Miscellaneous-42683.png
  • 2)
    Maths-Miscellaneous-42684.png

  • Maths-Miscellaneous-42685.png
  • Many solutions

Maths-Miscellaneous-42687.png
  • G is abelian
  • G is not abelian
  • O(G) = 2 only
  • None of these
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Maths Quiz Questions and Answers