JEE Questions for Maths Sequences And Series Quiz 3 - MCQExams.com

The sum of series
Maths-Sequences and Series-47280.png
  • 2 loge 2 +1
  • 2 loge 2
  • 2 loge 2 - 1
  • loge 2-1
If 0 < y < 21/3 and χ (y3 -= 1, then
Maths-Sequences and Series-47282.png

  • Maths-Sequences and Series-47283.png
  • 2)
    Maths-Sequences and Series-47284.png

  • Maths-Sequences and Series-47285.png

  • Maths-Sequences and Series-47286.png
The sum of the series log9 3 + log27 3 – log81 3 + log243 3 – ...is
  • 1– loge 2
  • 1 + loge 2
  • loge 3
  • 1 + loge 3
The sum of the infinite series
Maths-Sequences and Series-47289.png
  • (1/loge 2
  • (1/ loge 2
  • (1/loge 2
  • (1/loge 2

Maths-Sequences and Series-47291.png
  • 2loge 2 – 2
  • 2 – loge 2
  • 2loge 4
  • loge 4

Maths-Sequences and Series-47293.png
  • logeχy
  • loge(χ – y)
  • loge(χ + y)
  • loge(χ/y)
The coefficient of χn in the expansion of loga (1 +χ) is

  • Maths-Sequences and Series-47295.png
  • 2)
    Maths-Sequences and Series-47296.png

  • Maths-Sequences and Series-47297.png

  • Maths-Sequences and Series-47298.png

Maths-Sequences and Series-47300.png
  • 1/4
  • log3 (3/4)
  • loge (3/2)
  • loge (2/3)
In the expansion of 2loge χ - loge (χ +- loge (χ - 1), the coefficient of χ- 4 is
  • 1/2
  • - 1
  • 1
  • None of these
If eχ / 1-χ = B0χ + B1χ +B2χ +...+ Bn χn, then the value of Bn - Bn-1 is
  • 1
  • 1/n
  • 1/n!
  • None of these
For every real number χ,
Maths-Sequences and Series-47304.png
  • no real solution
  • exactly one real solution
  • excatly two real solution
  • infinite number of real solutions
Let S denotes the sum of the infinite series
Maths-Sequences and Series-47306.png
  • S < 8
  • S > 12
  • 8 < S < 12
  • S = 8
Sum of the series (χ + y) (χ - y) + 1/2!(χ + y)(χ - y)(χ2 + y2) + 1/3!(χ + y) (χ - y) (χ4 + y4 + χ2y2) + ... is
  • e χ + ey
  • e χ - ey
  • e χ2 + ey 2
  • e χ2 - ey 2

Maths-Sequences and Series-47309.png
  • e/4
  • 8e
  • e/2

  • Maths-Sequences and Series-47310.png
The value of
Maths-Sequences and Series-47312.png
  • 6e
  • 5e
  • 4e
  • None of these
The value of
Maths-Sequences and Series-47314.png
  • e1/2
  • e-1
  • e
  • e-1/3
The sum of the infinite series
Maths-Sequences and Series-47316.png

  • Maths-Sequences and Series-47317.png
  • 2)
    Maths-Sequences and Series-47318.png

  • Maths-Sequences and Series-47319.png

  • Maths-Sequences and Series-47320.png

  • Maths-Sequences and Series-47321.png
The sum of the infinite series
Maths-Sequences and Series-47323.png
  • e
  • e2
  • √e
  • 1/e
In the expansion of
Maths-Sequences and Series-47325.png
  • 0
  • 1
  • 2
  • None of these
The value of
Maths-Sequences and Series-47327.png
  • e
  • 2e
  • 3e/2
  • 4e/5

Maths-Sequences and Series-47329.png
  • e
  • e2 + e
  • e2
  • e2 - e

Maths-Sequences and Series-47331.png
  • e-1/2
  • e
  • e/4
  • e/6
The sum of series
Maths-Sequences and Series-47333.png

  • Maths-Sequences and Series-47334.png
  • 2)
    Maths-Sequences and Series-47335.png

  • Maths-Sequences and Series-47336.png

  • Maths-Sequences and Series-47337.png

Maths-Sequences and Series-47339.png
  • e + 1
  • 2)
    Maths-Sequences and Series-47340.png
  • e - 1
  • None of these
The value of
Maths-Sequences and Series-47342.png
  • log 3
  • log 2
  • 1/2
  • None of these
The coefficient of χk in the expansion of
Maths-Sequences and Series-47344.png

  • Maths-Sequences and Series-47345.png
  • 2)
    Maths-Sequences and Series-47346.png

  • Maths-Sequences and Series-47347.png
  • 1/k!
If eeχ – a0 + a1χ2 +a2χ2+ ..., then
  • a0 = 1
  • a0 = e
  • a0 = ee
  • a0 = e2
  • a0

Maths-Sequences and Series-47350.png
  • e-2
  • e2
  • e1/2
  • None of these
The coefficient of χn in the expansion of
Maths-Sequences and Series-47352.png

  • Maths-Sequences and Series-47353.png
  • 2)
    Maths-Sequences and Series-47354.png

  • Maths-Sequences and Series-47355.png
  • None of these

Maths-Sequences and Series-47357.png
  • 2e - 1
  • 2e + 1
  • 6e - 1
  • 6e + 1
If |a| < 1,
Maths-Sequences and Series-47359.png

  • Maths-Sequences and Series-47360.png
  • 2)
    Maths-Sequences and Series-47361.png

  • Maths-Sequences and Series-47362.png

  • Maths-Sequences and Series-47363.png

Maths-Sequences and Series-47365.png
  • AP
  • HP
  • GP
  • Both (b) and (c)
Let x1 , x2,... xn be in an AP. x1 + x4 + x9 + x11 + x20 + x22 + x27 + x30 = 272 then x1 + x3 + ...+x30 is equal to
  • 1020
  • 1200
  • 716
  • 2720
  • 2072
If the sum of first 75 terms of an AP is 2625, then the 38th term of an AP is
  • 39
  • 37
  • 36
  • 38
  • 35
Let Vr denote the sum of the first r terms of an arithmetic progression (AP), whose first term is r and the common difference is (2r- 1). The sum V1 + V2 +... + Vn is
  • 1/12n(n +(3n2 - n +1)
  • 1/12n(n + 1)(3n2 + n + 2)
  • 1/2n(2n2 - n + 1)
  • 1/3(2n3 - 2n + 3)
In an arithmetic progression a1 , a2 , a3 ,..., sum (S) = a12 - a22+a32 - a42 + ... - a2k2 is equal to

  • Maths-Sequences and Series-47369.png
  • 2)
    Maths-Sequences and Series-47370.png

  • Maths-Sequences and Series-47371.png
  • None of these
If log10 2, log10(2χ -and log10(2χ +are in AP, then χ is equal to
  • log2 5
  • log2 (- 1)
  • log2 (1/5)
  • log5 2
If 100 times the 100th term of an AP with non-zero common difference equals to 50 times its 50th term, then the 150th tern of an AP is
  • - 150
  • 150 times its 50th term
  • 150
  • Zero
Six numbers are in an AP such that their sum is 3. The first term is 4 times the third term. Then, the fifth term is
  • - 15
  • - 3
  • 9
  • - 4
Let an be the nth term of an AP. If
Maths-Sequences and Series-47376.png

  • Maths-Sequences and Series-47377.png
  • α - β

  • Maths-Sequences and Series-47378.png
  • β - α
If the numbers a, b, c, d and e are form of an AP with a = 1, then a - 4b + 6c - 4d + e is equal to
  • 1
  • 2
  • 0
  • 3
The first four terms of an AP are a, 9, 3a - b, 3a + b. The 2011 th term of an AP is
  • 2015
  • 4025
  • 5030
  • 8045
  • 6035
If S1, S2 and S3 are the sum of n, 2n and 3n terms respectively of an arithmetic progression, then
  • S3 = 2(S1 + S2 )
  • s3 = s1 + S2
  • S3 = 3(S2 - S1)
  • S3 = 3(S2 + S1)
A person is to count 4500 currency notes. Let an denotes the number of notes he counts in the nth minute. If a1 = a2 = ... = a10 = 150 and a10, a11,.... are in AP with common difference - 2 , then the time taken by him to count all notes, is
  • 24 min
  • 34min
  • 125min
  • 135min
If the sum to first n terms of an AP 2, 4, 6, ... is 240, then the value of n is
  • 14
  • 15
  • 16
  • 17
  • 18
The arithmetic mean of 7 consecutive integers starting with a is m. Then, the arithmetic mean of 11 consecutive integers starting with a + 2 is
  • 2a
  • 2m
  • a + 4
  • m + 4
The sum of all two digit natural numbers which leave a remainder 5 when they are divided by 7 is equal to
  • 715
  • 702
  • 615
  • 602
  • 589
An AP consists of 23 terms. If the sum of the three terms in the middle is 141 and the sum of the last three terms is 261, then the first term is
  • 6
  • 5
  • 4
  • 3
  • 2
If the sum of first n terms of an AP is cn2, then the sum of squares of these n terms is

  • Maths-Sequences and Series-47388.png
  • 2)
    Maths-Sequences and Series-47389.png

  • Maths-Sequences and Series-47390.png

  • Maths-Sequences and Series-47391.png

Maths-Sequences and Series-47393.png
  • 5
  • 6
  • 9
  • 12
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Maths Quiz Questions and Answers