JEE Questions for Maths Sequences And Series Quiz 8 - MCQExams.com

If a, a1, a2, ,...,a2n,b are in arithmetic progression and a, g1, g2,..,g2n,b are in geometric progression and his the harmonic mean of a and b, then
Maths-Sequences and Series-47717.png
  • 2nh
  • n/h
  • nh
  • 2n/h
The sum of the product of the numbers ± 1 ± 2 ±...± n, taken two at a time, is

  • Maths-Sequences and Series-47719.png
  • 2)
    Maths-Sequences and Series-47720.png

  • Maths-Sequences and Series-47721.png
  • 0
If y = 3χ + 6χ2 + 10χ3 +..., then the value χ in terms of y is
  • 1 - (1 - y)-1/3
  • 1 - (1 + y)1/3
  • 1 + (1 + y)-1/3
  • 1 - (1 + y)-1/3
The sum of series 1 + 3/2 + 7/4 + 15/8 + 31/16 +... up to n terms is equal to

  • Maths-Sequences and Series-47724.png
  • 2)
    Maths-Sequences and Series-47725.png

  • Maths-Sequences and Series-47726.png

  • Maths-Sequences and Series-47727.png
For any integer n ≥ 1,
Maths-Sequences and Series-47729.png

  • Maths-Sequences and Series-47730.png
  • 2)
    Maths-Sequences and Series-47731.png

  • Maths-Sequences and Series-47732.png

  • Maths-Sequences and Series-47733.png
Sum of n terms of the series 1/2 + 3/4 + 7/8 + 5/16 + ...is
  • 2-n
  • 2-n(n - 1)
  • 2n (n -+ 1
  • 2-n + n - 1
If α ,β and γ are the roots of the equation χ2 - pχ + q = 0, then the values of
Maths-Sequences and Series-47736.png
  • log(1- pχ + qχ2 )
  • log(1 + pχ - qχ2 )
  • log(1 + pχ + qχ2 )
  • None of these
The sum of the series log4 2 - log8 2 + log16 2 - ... is
  • e2
  • loge 2 + 1
  • loge 3 - 2
  • 1 - loge 2
The value of
Maths-Sequences and Series-47739.png
  • 10
  • 12
  • log(32. 42)
  • log (22 . 32)
The sum of series
Maths-Sequences and Series-47741.png
  • loge 2 – 1/2
  • loge 2
  • loge 2 + 1/2
  • loge 2 +1
The sum of series 2[7-1 + 3-1 . 7-3 + 5-1 . 7-5 +...] is
  • loge (4/3)
  • loge (3/4)
  • 2loge (3/4)
  • 2loge (4/3)

Maths-Sequences and Series-47744.png
  • e
  • e-1
  • 1
  • 0
The coefficient χn of in the series
Maths-Sequences and Series-47746.png

  • Maths-Sequences and Series-47747.png
  • 2)
    Maths-Sequences and Series-47748.png

  • Maths-Sequences and Series-47749.png

  • Maths-Sequences and Series-47750.png

Maths-Sequences and Series-47752.png

  • Maths-Sequences and Series-47753.png
  • 2)
    Maths-Sequences and Series-47754.png

  • Maths-Sequences and Series-47755.png

  • Maths-Sequences and Series-47756.png
The coefficient of χ3 in the expansion of 3 χ is
  • 33/6
  • (log 3)3/3
  • log(3)3/6
  • (log 3)3/6
  • 3/3!

Maths-Sequences and Series-47759.png
  • e
  • 2e
  • 3e
  • None of these

Maths-Sequences and Series-47761.png
  • e
  • 2e
  • 3e
  • 4e

Maths-Sequences and Series-47763.png

  • Maths-Sequences and Series-47764.png
  • 2)
    Maths-Sequences and Series-47765.png

  • Maths-Sequences and Series-47766.png

  • Maths-Sequences and Series-47767.png

Maths-Sequences and Series-47769.png

  • Maths-Sequences and Series-47770.png
  • 2)
    Maths-Sequences and Series-47771.png

  • Maths-Sequences and Series-47772.png

  • Maths-Sequences and Series-47773.png

Maths-Sequences and Series-47775.png

  • Maths-Sequences and Series-47776.png
  • 2)
    Maths-Sequences and Series-47777.png

  • Maths-Sequences and Series-47778.png

  • Maths-Sequences and Series-47779.png

Maths-Sequences and Series-47781.png

  • Maths-Sequences and Series-47782.png
  • 2)
    Maths-Sequences and Series-47783.png

  • Maths-Sequences and Series-47784.png

  • Maths-Sequences and Series-47785.png

Maths-Sequences and Series-47787.png

  • Maths-Sequences and Series-47788.png
  • 2)
    Maths-Sequences and Series-47789.png

  • Maths-Sequences and Series-47790.png
  • None of these

Maths-Sequences and Series-47792.png

  • Maths-Sequences and Series-47793.png
  • 2)
    Maths-Sequences and Series-47794.png

  • Maths-Sequences and Series-47795.png

  • Maths-Sequences and Series-47796.png

Maths-Sequences and Series-47798.png

  • Maths-Sequences and Series-47799.png
  • 2)
    Maths-Sequences and Series-47800.png

  • Maths-Sequences and Series-47801.png
  • None of these

Maths-Sequences and Series-47803.png

  • Maths-Sequences and Series-47804.png
  • 2)
    Maths-Sequences and Series-47805.png

  • Maths-Sequences and Series-47806.png
  • None of these

Maths-Sequences and Series-47808.png

  • Maths-Sequences and Series-47809.png
  • 2)
    Maths-Sequences and Series-47810.png

  • Maths-Sequences and Series-47811.png
  • None of these

Maths-Sequences and Series-47813.png

  • Maths-Sequences and Series-47814.png
  • 2)
    Maths-Sequences and Series-47815.png

  • Maths-Sequences and Series-47816.png
  • None of these

Maths-Sequences and Series-47818.png

  • Maths-Sequences and Series-47819.png
  • 2)
    Maths-Sequences and Series-47820.png

  • Maths-Sequences and Series-47821.png

  • Maths-Sequences and Series-47822.png

Maths-Sequences and Series-47824.png
  • 5e
  • 3e
  • 7e
  • 2e

Maths-Sequences and Series-47826.png

  • Maths-Sequences and Series-47827.png
  • 2)
    Maths-Sequences and Series-47828.png

  • Maths-Sequences and Series-47829.png

  • Maths-Sequences and Series-47830.png

Maths-Sequences and Series-47832.png

  • Maths-Sequences and Series-47833.png
  • 2)
    Maths-Sequences and Series-47834.png

  • Maths-Sequences and Series-47835.png
  • None of these

Maths-Sequences and Series-47837.png

  • Maths-Sequences and Series-47838.png
  • 2)
    Maths-Sequences and Series-47839.png

  • Maths-Sequences and Series-47840.png

  • Maths-Sequences and Series-47841.png

Maths-Sequences and Series-47843.png

  • Maths-Sequences and Series-47844.png
  • 2)
    Maths-Sequences and Series-47845.png

  • Maths-Sequences and Series-47846.png

  • Maths-Sequences and Series-47847.png

Maths-Sequences and Series-47849.png
  • e
  • 3e
  • 4e
  • 5e

Maths-Sequences and Series-47851.png
  • e
  • 2)
    Maths-Sequences and Series-47852.png

  • Maths-Sequences and Series-47853.png

  • Maths-Sequences and Series-47854.png

Maths-Sequences and Series-47856.png

  • Maths-Sequences and Series-47857.png
  • 2)
    Maths-Sequences and Series-47858.png

  • Maths-Sequences and Series-47859.png
  • None of these

Maths-Sequences and Series-47861.png

  • Maths-Sequences and Series-47862.png
  • 2)
    Maths-Sequences and Series-47863.png
  • Equal to 0
  • None of these

Maths-Sequences and Series-47865.png
  • In A.P
  • In G.P.
  • In H.P
  • None of these

Maths-Sequences and Series-47867.png

  • Maths-Sequences and Series-47868.png
  • 2)
    Maths-Sequences and Series-47869.png

  • Maths-Sequences and Series-47870.png
  • None of these
If the (m + 1)th, (n + 1)th and (r + 1)th terms of an A.P. are in G.P. and m, n, r are in H.P. show that the ratio of the first term to the common difference of the A.P. is

  • Maths-Sequences and Series-47872.png
  • 2)
    Maths-Sequences and Series-47873.png

  • Maths-Sequences and Series-47874.png

  • Maths-Sequences and Series-47875.png
Number of terms in the sequence 1, 3, 6, 10, 15,…., 5050 is
  • 50
  • 75
  • 100
  • 125

Maths-Sequences and Series-47878.png

  • Maths-Sequences and Series-47879.png
  • 2)
    Maths-Sequences and Series-47880.png

  • Maths-Sequences and Series-47881.png
  • None of these

Maths-Sequences and Series-47883.png

  • Maths-Sequences and Series-47884.png
  • 2)
    Maths-Sequences and Series-47885.png

  • Maths-Sequences and Series-47886.png

  • Maths-Sequences and Series-47887.png

Maths-Sequences and Series-47889.png

  • Maths-Sequences and Series-47890.png
  • 2)
    Maths-Sequences and Series-47891.png

  • Maths-Sequences and Series-47892.png
  • None of these

Maths-Sequences and Series-47894.png

  • Maths-Sequences and Series-47895.png
  • 2)
    Maths-Sequences and Series-47896.png

  • Maths-Sequences and Series-47897.png
  • None of these

Maths-Sequences and Series-47899.png
  • 7
  • 6
  • 9
  • None of these

Maths-Sequences and Series-47901.png

  • Maths-Sequences and Series-47902.png
  • 2)
    Maths-Sequences and Series-47903.png

  • Maths-Sequences and Series-47904.png
  • None of these

Maths-Sequences and Series-47906.png

  • Maths-Sequences and Series-47907.png
  • 2)
    Maths-Sequences and Series-47908.png

  • Maths-Sequences and Series-47909.png
  • None of these

Maths-Sequences and Series-47911.png
  • 1
  • 2
  • 3
  • 0
The sixth term of an A.P. is equal to 2 and its common difference is greater than 1. The value of the common difference of the progression so that the product of the first, fourth and fifth terms is greatest, is

  • Maths-Sequences and Series-47913.png
  • 2)
    Maths-Sequences and Series-47914.png

  • Maths-Sequences and Series-47915.png

  • Maths-Sequences and Series-47916.png
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Maths Quiz Questions and Answers