JEE Questions for Maths Trigonometric Ldentities And Equations Quiz 1 - MCQExams.com

If cos (A - B) = 3/5 and tan A tan B = 2, then which one of the following is correct ?
  • sin (A + B) = 1/5
  • sin (A + B) = -1/5
  • cos (A - B) = -1/5
  • cos (A + B) = -1/5
cos 2 χ + 7 = a (2 - sinχ) can have a real solution for
  • all values of a
  • a ϵ [2, 6]
  • a ϵ (-∞, 2)
  • a ϵ (0,∞)
Number of solutions of |χ - 1| = cos χ is
  • 2
  • 3
  • 4
  • None of the above
The value of sin 36o sin 72o sin 108o sin 144o is
  • 1/4
  • 1/16
  • 3/4
  • 5/16
The value of 2cot2 (π/+ 4tan2 (π/- 3cosec π/6 is
  • 2
  • 4
  • 4/3
  • 3/4

Maths-Trigonometric ldentities and Equations-54020.png

  • Maths-Trigonometric ldentities and Equations-54021.png
  • 2)
    Maths-Trigonometric ldentities and Equations-54022.png

  • Maths-Trigonometric ldentities and Equations-54023.png
  • None of these.

Maths-Trigonometric ldentities and Equations-54025.png

  • Maths-Trigonometric ldentities and Equations-54026.png
  • 2)
    Maths-Trigonometric ldentities and Equations-54027.png

  • Maths-Trigonometric ldentities and Equations-54028.png

  • Maths-Trigonometric ldentities and Equations-54029.png
If sin A + sin B + sin C = 3, then cos A + cos B + cos c is equal to
  • 3
  • 2
  • 1
  • 0

Maths-Trigonometric ldentities and Equations-54032.png
  • no real solution
  • one real solution
  • more than one solution
  • none of these
The general solution of the trigonometric equation sin x+cos x = 1 is given by :

  • Maths-Trigonometric ldentities and Equations-54034.png
  • 2)
    Maths-Trigonometric ldentities and Equations-54035.png

  • Maths-Trigonometric ldentities and Equations-54036.png
  • none of these

Maths-Trigonometric ldentities and Equations-54038.png
  • 2
  • 2 sin 20°/sin 40°
  • 4
  • 4 sin 20°/sin 40°
The general solution of

sin x – 3 sin 2x + sin 3x = cos x – 3 cos 2x + cos 3x is


  • Maths-Trigonometric ldentities and Equations-54040.png
  • 2)
    Maths-Trigonometric ldentities and Equations-54041.png

  • Maths-Trigonometric ldentities and Equations-54042.png

  • Maths-Trigonometric ldentities and Equations-54043.png
The equation (cos p –x2 + (cos p)x + sin p = 0 In the variable x, has real roots. Then p can take any value in the interval

  • Maths-Trigonometric ldentities and Equations-54045.png
  • 2)
    Maths-Trigonometric ldentities and Equations-54046.png

  • Maths-Trigonometric ldentities and Equations-54047.png

  • Maths-Trigonometric ldentities and Equations-54048.png

Maths-Trigonometric ldentities and Equations-54050.png
  • 0
  • 1
  • 2
  • 3

Maths-Trigonometric ldentities and Equations-54052.png
  • 3/16
  • 3/8
  • 3/4
  • 1/2

Maths-Trigonometric ldentities and Equations-54054.png
  • 1/2
  • 3/4
  • 5/4
  • 2

Maths-Trigonometric ldentities and Equations-54056.png

  • Maths-Trigonometric ldentities and Equations-54057.png
  • 2)
    Maths-Trigonometric ldentities and Equations-54058.png

  • Maths-Trigonometric ldentities and Equations-54059.png

  • Maths-Trigonometric ldentities and Equations-54060.png

Maths-Trigonometric ldentities and Equations-54062.png
  • √2
  • 3√2
  • 2√2
  • 2 - √2

Maths-Trigonometric ldentities and Equations-54064.png

  • Maths-Trigonometric ldentities and Equations-54065.png
  • 2)
    Maths-Trigonometric ldentities and Equations-54066.png

  • Maths-Trigonometric ldentities and Equations-54067.png

  • Maths-Trigonometric ldentities and Equations-54068.png

Maths-Trigonometric ldentities and Equations-54070.png
  • 2
  • 2 m
  • 2 n
  • m n

Maths-Trigonometric ldentities and Equations-54072.png

  • Maths-Trigonometric ldentities and Equations-54073.png
  • 2)
    Maths-Trigonometric ldentities and Equations-54074.png

  • Maths-Trigonometric ldentities and Equations-54075.png

  • Maths-Trigonometric ldentities and Equations-54076.png
If χ sin3 θ + y cos3 θ = sin θ cos θ and χ sin θ = y cos θ, χ2 + y2 is equal to
  • 2
  • 0
  • 3
  • 4
  • 1
3 (sin x - cos x)4 + 6 (sin x + cos x)2 + 4 (sin6 x + cos6 x) =
  • 11
  • 12
  • 13
  • 14

Maths-Trigonometric ldentities and Equations-54080.png

  • Maths-Trigonometric ldentities and Equations-54081.png
  • 2)
    Maths-Trigonometric ldentities and Equations-54082.png

  • Maths-Trigonometric ldentities and Equations-54083.png

  • Maths-Trigonometric ldentities and Equations-54084.png

Maths-Trigonometric ldentities and Equations-54086.png

  • Maths-Trigonometric ldentities and Equations-54087.png
  • 2)
    Maths-Trigonometric ldentities and Equations-54088.png
  • x = y

  • Maths-Trigonometric ldentities and Equations-54089.png

Maths-Trigonometric ldentities and Equations-54091.png
  • - 1
  • 0
  • 1
  • None of these
The value of cos 480o sin 150o + sin 600o cos 390o is
  • 0
  • 1
  • 1/2
  • - 1
  • -1/2

Maths-Trigonometric ldentities and Equations-54094.png
  • χ + y ≠ 0
  • χ = y, χ ≠ 0 , y ≠ 0
  • χ = y
  • χ ≠ 0 , y ≠ 0
The value of cos (270o + θ ) cos (90o - θ) - sin (270o - θ) cos θ is
  • 0
  • - 1
  • 1/2
  • 1

Maths-Trigonometric ldentities and Equations-54097.png
  • 2 sin A
  • 2 cos A
  • 2 cosec A
  • 2 sec A
The value of the expression cos 1o cos 2o ....cos 179o is
  • 0
  • 1
  • 1/√2
  • - 1
If sec θ + tan θ = k, then cos θ equals

  • Maths-Trigonometric ldentities and Equations-54100.png
  • 2)
    Maths-Trigonometric ldentities and Equations-54101.png

  • Maths-Trigonometric ldentities and Equations-54102.png

  • Maths-Trigonometric ldentities and Equations-54103.png
∆ ABC is a right angled isosceles triangle with ∠B = 90o. If D is a point on AB, ∠CDB = 15o and AD = 35 cm, then CD is equal to
  • 35√2 cm
  • 70√2 cm
  • (35√3/cm
  • 35√6 cm
  • (35√2/cm
cos 1o + cos 2o + cos 3o + ...+ cos 180o is equal to
  • 1
  • 0
  • 2
  • - 1
The value of the expression sin6 θ + cos6 θ + 3 sin2 θ cos2 θ is
  • 0
  • 2
  • 3
  • 1
If sin A + cos A = √2 , then the values of cos2 A is
  • √2
  • 1/2
  • 4
  • - 1

Maths-Trigonometric ldentities and Equations-54109.png
  • 0
  • 1
  • 2
  • None of these

Maths-Trigonometric ldentities and Equations-54111.png

  • Maths-Trigonometric ldentities and Equations-54112.png
  • 2)
    Maths-Trigonometric ldentities and Equations-54113.png

  • Maths-Trigonometric ldentities and Equations-54114.png
  • None of these
If sin θ = 3 sin (θ + 2α), then the value of tan ( θ + α) + 2 tan α is
  • 3
  • 2
  • - 1
  • 0
  • 1
If α ,β and γ ϵ [0,π] and α ,β , γ are in AP, then
Maths-Trigonometric ldentities and Equations-54117.png
  • sin β
  • cos β
  • cot β
  • cosec β
  • 2 cos β

Maths-Trigonometric ldentities and Equations-54119.png
  • 1/√2
  • 2
  • 1
  • √2
If α ,β ϵ (0,π/2), sin α = 4/5 and cos (α + β) = -(12/13), then sin β is equal to
  • 63/65
  • 61/65
  • 3/5
  • 5/13
  • 8/65
If cos (α + β ) = 4/5 and sin (α - β ) = 5/13, where 0 ≤ α ,β ≤ π/4, then tan 2α is equal to
  • 25/16
  • 56/33
  • 19/12
  • 20/7

Maths-Trigonometric ldentities and Equations-54123.png

  • Maths-Trigonometric ldentities and Equations-54124.png
  • 2)
    Maths-Trigonometric ldentities and Equations-54125.png

  • Maths-Trigonometric ldentities and Equations-54126.png

  • Maths-Trigonometric ldentities and Equations-54127.png
If sin A + sin B = √3 (cos B - cos A), then sin 3A + sin 3B is equal to
  • 0
  • 2
  • 1
  • - 1

Maths-Trigonometric ldentities and Equations-54131.png
  • a + b = c
  • b + c = a
  • a + c = b
  • b = c
The value of tan 20o + 2 tan 50o - tan 70o is
  • 1
  • 0
  • tan 50o
  • None of these

Maths-Trigonometric ldentities and Equations-54134.png
  • cot B
  • cot 2B
  • tan 2B
  • tan B
sin 12o sin 48o sin 54o is equal to
  • 1/16
  • 1/32
  • 1/8
  • 1/4

Maths-Trigonometric ldentities and Equations-54137.png
  • 2 - √5
  • 2 + √5
  • - 2 - √5
  • - 2 + √5
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Maths Quiz Questions and Answers